KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 68. Connect an interior point of a parallelogram to each vertex. Show that it is possible to construct a quadrilateral with the four segments hence obtained as sides such that its vertices are lying on the sides of the parallelogram.

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 February 2006.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás:

Használjuk az ábra jelöléseit! Fektessünk a P pontra a paralelogramma egyik oldalával párhuzamos egyenest, ez a paralelogramma megfelelő oldalait az X és Y pontokban metszi. Toljuk el az ABXY paralelogrammát AD-vel párhuzamosan úgy, hogy az A pont D-be kerüljön. Az eltolás során az X, P, Y, B pontok rendre az X', P', Y', C pontokba kerülnek át. Mivel AX=DX', ezért AD=XX'; továbbá AB=XY=DC=X'Y'. Ezek szerint a kapott XYY'X' paralelogramma az ABCD paralelogrammával egybevágó, hiszen a megfelelő oldalak párhuzamosak és egyenlők. Ebben a paralelogrammában a PCP'D négyszög éppen a PA, PB, PC, PD szakaszokból szerkesztett négyszög, melynek csúcsai a paralelogramma oldalain vannak. Ha az XYY'X' paralelogrammát visszatoljuk az ABCD paralelogrammába, akkor a PCP'D négyszög eltoltja éppen a keresett szerkesztendő négyszög.


Statistics on problem K. 68.
130 students sent a solution.
6 points:62 students.
5 points:18 students.
4 points:16 students.
3 points:9 students.
2 points:4 students.
1 point:5 students.
0 point:11 students.
Unfair, not evaluated:5 solutions.


  • Problems in Mathematics of KöMaL, January 2006

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley