KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

K. 69. Out of the digits of a three-digit number of different digits, all the possible two-digit numbers of different digits are formed, and these two-digit numbers are added. Given that the sum is equal to the original three-digit number, find all such three-digit numbers.

(6 points)

This problem is for grade 9 students only.

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Jelöljük az eredeti szám számjegyeit sorban a, b, c-vel. A kialakítható 2-jegyű számok: \overline{ab}, \overline{ac}, \overline{ba}, \overline{bc}, \overline{ca}, \overline{cb}. Ezek összege 22(a+b+c), ami egyenlő az eredeti számmal (tehát az eredeti szám osztható 22-vel), így 22(a+b+c)=100a+10b+c. Ez rendezve a 7(a+b+c)=3(11a+b) alakot ölti. A jobb oldal osztható 3-mal, tehát a bal oldal is, ez viszont azt jelenti, hogy a+b+c osztható 3-mal. Láttuk, hogy az eredeti háromjegyű szám osztható 22-vel, továbbá a számjegyek összege 3-mal, ezért 66 többszörösei jöhetnek szóba. 600-nál nagyobbra nem kell gondolnunk, mert hat kétjegyű szám összege 600-nál nem lehet több. Vagyis csak 132, 198, 264, 330, 396, 462, 528, 594 jöhet szóba. Ellenőrizhetjük, hogy ezek közül a 132, 264, 396 megfelelő, a többi pedig nem.


Statistics on problem K. 69.
144 students sent a solution.
6 points:Bihari Mónika, Botlik Barnabás, Dániel Balázs, Izsó Dániel, János Júlia Zsófia, Kunos Ádám, Németh Erika Judit, Petrik Laura.
5 points:55 students.
4 points:27 students.
3 points:19 students.
2 points:5 students.
1 point:10 students.
0 point:7 students.
Unfair, not evaluated:13 solutions.


  • Problems in Mathematics of KöMaL, January 2006

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program