Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem P. 4416. (February 2012)

P. 4416. A train travels at a speed of v0, then it slows down uniformly during a time of T, and then it stops. In one of the wagons there is a small object on the floor. How much distance does this small object cover on the floor, and how long does it move? The coefficient of friction is \mu.

(5 pont)

Deadline expired on March 12, 2012.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Ha a vagon elég hosszú, a kisméretű test

\(\displaystyle T_\text{összes}=\frac{v_{0}}{\mu g}\)

ideig mozog, és

\(\displaystyle s=\frac{v_{0}^2}{2\mu g}-\frac{v_{0}T}{2}\)

utat tesz meg.


Statistics:

136 students sent a solution.
5 points:Barta Szilveszter Marcell, Bingler Arnold, Bogye Balázs, Bolgár Dániel, Csáky Pál, Czigány Máté Gábor, Dávid Bence, Demeter Dániel, Dinev Georgi, Farkas-Szabó Dominik, Fehér Zsombor, Fekete Panna, Havasi 0 Márton, Horicsányi Attila, Horváth András Levente, Horváth Dániel, Janzer Barnabás, Janzer Olivér, Koncz Gabriella, Kovács 444 Áron, Majoros Bence, Mázik László, Morvay Bálint, Nagy Lajos, Papp Roland, Pázmán Zalán, Petrács Ervin, Sárvári Péter, Seress Dániel, Szabó 928 Attila, Szélig Áron, Szép Márton István, Szigeti Bertalan György, Tatár Dániel, Trócsányi Péter, Tuza Réka, Vajda Balázs, Zsiros Ádám.
4 points:31 students.
3 points:17 students.
2 points:16 students.
1 point:14 students.
0 point:18 students.
Unfair, not evaluated:2 solutions.

Problems in Physics of KöMaL, February 2012