KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

P. 4469. Two balls of masses m1 and m2 are hanged at the same point, with threads of equal lengths, and displaced towards the left and the right with the same angle measured from the vertical. They are both released at the same moment, and collide totally inelastically. The positions of the balls are described by their height above the horizontal plane which is through the lowest point of their paths. (Air resistance is negligible.) Give the ratio of the greatest height reached by the balls after the collision to the initial height.

(4 points)

Deadline expired on 12 November 2012.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldásvázlat.

\(\displaystyle h_1=\left( \frac{m_1-m_2}{m_1+m_2} \right)^2 h_0.\)


Statistics on problem P. 4469.
167 students sent a solution.
4 points:142 students.
3 points:17 students.
2 points:4 students.
1 point:2 students.
0 point:2 students.


  • Problems in Physics of KöMaL, October 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley