KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

P. 4883. Some electrons are moving in the magnetic field of 0.03 T of a particle accelerator along a circular path of radius 0.2 m. What is the speed of the electrons?

(5 points)

Deadline expired on 12 December 2016.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Ha a nemrelativisztikus képletek alapján számolunk, a mozgásegyenlet:

\(\displaystyle evB=\frac{mv^2}{r},\)

ahol \(\displaystyle m\) az elektron tömege, \(\displaystyle e\) pedig a töltése. Innen az elektron sebességére

\(\displaystyle v=\frac{eBr}{m}=\frac{1{,}6\cdot10^{-19}~{\rm C}\cdot 0{,}03~{\rm T}\cdot 0{,}2~\rm m}{0{,}91\cdot10^{-30}~{\rm kg}}=10{,}5\cdot10^{8}~\frac{{\rm m}}{\rm s}, \)

vagyis a fénysebesség 3,5-szerese (!) adódik. Ez arra figyelmeztet, hogy a nemrelativisztikus számolási mód nem jogos.

A relativisztikus mozgásegyenlet:

\(\displaystyle evB=\frac{\Delta p}{\Delta t},\)

ahol \(\displaystyle p\) a részecske relativisztikus impulzusa. Mivel az elektron és vele együtt az impulzusvektor is \(\displaystyle \omega=v/r\) szögsebességgel forog, fennáll

\(\displaystyle \frac{\Delta p}{\Delta t}=\frac{v}{r}p,\)

és így a mozgásegyenletből következően

\(\displaystyle p=eBr=3{,}5mc.\)

(Az utolsó lépésnél kihasználtuk a első, nemrelativisztikus probálkozásban kapott számszerű eredményt; \(\displaystyle m\) az elektron nyugalmi tömegét jelöli.)

Másrészt az impulzus és a sebesség között fennáll a

\(\displaystyle p=\frac{mv}{\sqrt{1-v^2/c^2}}\)

összefüggés, amit a \(\displaystyle \beta=v/c\) jelölés használatával

\(\displaystyle 3{,}5=\frac{p}{mc}=\frac{\beta}{\sqrt{1-\beta^2}}\)

alakban is felírhatunk. Innen a

\(\displaystyle \beta=\sqrt{\frac{3{,}5^2}{1+3{,}5^2}}=0{,}96,\)

vagyis \(\displaystyle v=0{,}96\,c=2{,}88\cdot10^8~\)m/s eredményt kapjuk.


Statistics on problem P. 4883.
65 students sent a solution.
5 points:Alwaleed Aldhargam, Bekes Nándor, Csuha Boglárka, Di Giovanni András, Édes Lili, Faisal Fahad AlSallom, Fajszi Bulcsú, Fehér 169 Szilveszter, Hajnal Dániel Konrád, Iván Balázs, Jakus Balázs István, Kolontári Péter, Kondákor Márk, Magyar Róbert Attila, Makovsky Mihály, Markó Gábor, Marozsák Tóbiás , Molnár Mátyás, Nagy 555 Botond, Németh 777 Róbert, Nguyen Viet Hung, Olosz Adél, Páhoki Tamás, Pataki 245 Attila, Pszota Máté, Szabó 199 Márton, Szakály Marcell, Tófalusi Ádám, Varga-Umbrich Eszter, Zöllner András.
4 points:Bartók Imre, Csenger Géza, Fekete Balázs Attila, Illés Gergely, Illyés András, Krasznai Anna, Mocskonyi Mirkó, Németh 123 Balázs, Németh 999 Petra, Nenezic Patrick Uros, Ónodi Gergely, Osváth Botond, Sallai Krisztina, Sugár Soma, Szentivánszki Soma , Tibay Álmos, Wesniczky Albert, Zsombó István.
3 points:4 students.
2 points:4 students.
1 point:7 students.
Unfair, not evaluated:2 solutions.


  • Problems in Physics of KöMaL, November 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley