KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

P. 4895. A rod of length \(\displaystyle \ell\), and of mass \(\displaystyle M\), and another rod of length \(\displaystyle 2\ell\), and mass \(\displaystyle 2M\) are arranged as shown in the figure. What is the direction and the magnitude of the gravitational force exerted on the point-like object of mass \(\displaystyle m\)? (Look for an elementary solution.)

(5 points)

Deadline expired on 10 February 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Számítsuk ki először a felső (az ábrán vízszintes helyzetű) rúd által az \(\displaystyle m\) tömegű testre kifejtett \(\displaystyle F_1\) erőt. Mivel a rúd mérete és a testek távolsága összemérhető, az erő nem számolható a pontszerű testek között ható Newton-féle gravitációs vonzóerő képlete alapján. Az sem igaz, hogy a rúd által kifejtett erő akkora lenne, mintha a rúd teljes tömege a rúd tömegközéppontjában helyezkedne el. (Ez csak gömbszimmetrikus tömegeloszlások esetében lenne igaz.) A vonzóerőt a rúd kicsiny darabkákra osztásával és az erők összegzésével (integrálásával) nyilván ki lehet számítani, de van egyszerűbb, elemi módszer is.

Tudjuk, hogy két pontszerű test közötti gravitációs potenciális energia

\(\displaystyle E=-\gamma\frac{m_1m_2}{r},\)

ahol \(\displaystyle m_1\) és \(\displaystyle m_2\) a testek tömege, \(\displaystyle r\) pedig a távolságuk. Távolítsuk el – gondolatban – a \(\displaystyle 2M\) tömegű rudat az \(\displaystyle m\) tömegű testtől egy kicsiny (\(\displaystyle 2L\)-nél sokkal kisebb) \(\displaystyle \Delta x\) távolsággal. Ha a rúd és a pontszerű test között ható erő \(\displaystyle F_1\), akkor az eltávolítás során

\(\displaystyle W=F_1\Delta x\)

munkát kell végezzünk, ami a gravitációs helyzeti energia megváltozásával egyenlő. Az energiaváltozás szempontjából csak annyi történt, mintha a rúd egy kicsiny \(\displaystyle \Delta x\) hosszúságú, tehát \(\displaystyle \Delta m=(M/\ell)\Delta x\) tömegű darabkáját a rúd egyik végétől a másik végére helyeztük volna át, tehát

\(\displaystyle F_1\Delta x=\gamma m\frac{M}{\ell}\Delta x \left(-\frac{1}{3\ell}+\frac{1}{\ell}\right),\)

vagyis

\(\displaystyle F_1=\gamma\frac{mM}{\ell^2}\cdot \frac{2}{3}. \)

Hasonló megfontolásokkal adódik, hogy a másik rúd által kifejtett erő

\(\displaystyle F_2=\gamma\frac{mM}{\ell^2}\cdot \frac16.\)

Ezek szerint az eredő gravitációs erő iránya a hosszabb rúd felé mutató egyenessel

\(\displaystyle \alpha=\arctg\frac14\approx 14^\circ-\text{os} \)

szöget zár be, és az eredő erő nagysága

\(\displaystyle F=\sqrt{F_1^2+F_2^2}=\gamma\frac{\sqrt{17}mM}{6\ell^2}.\)


Statistics on problem P. 4895.
46 students sent a solution.
5 points:Bekes Nándor, Di Giovanni András, Faisal Fahad AlSallom, Fajszi Bulcsú, Fehér 169 Szilveszter, Ghada Alshalan, Jakus Balázs István, Kondákor Márk, Markó Gábor, Marozsák Tóbiás , Molnár Mátyás, Nagy 555 Botond, Németh 123 Balázs, Németh 777 Róbert, Olosz Adél, Papp 121 Krisztina, Sal Dávid, Tófalusi Ádám, Varga-Umbrich Eszter, Zöllner András.
4 points:Bartók Imre, Elek Péter, Németh Csaba Tibor, Osváth Botond, Pataki 245 Attila, Szentivánszki Soma .
3 points:2 students.
2 points:2 students.
1 point:8 students.
0 point:8 students.


  • Problems in Physics of KöMaL, January 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley