KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

P. 4911. Calculate the moment of inertia of a homogeneous triangle-shaped sheet with sides \(\displaystyle a\), \(\displaystyle b\), and \(\displaystyle c\), and of mass \(\displaystyle m\) around a rotational axis, which is perpendicular to the plane of the triangle and goes through the centroid of the triangle. (The problem can be solved in an elementary way as well.)

(5 points)

Deadline expired on 10 March 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

\(\displaystyle \theta=m\frac{a^2+b^2+c^2}{36}\). Az elemi megoldás: a háromszöget feldarabolhatjuk 4 kisebb, egybevágó háromszögre, amelyek tehetetlenségi nyomatéka az eredeti háromszög arányos kicsinyítéséből és a Steiner-tételből számítható.


Statistics on problem P. 4911.
27 students sent a solution.
5 points:Bartók Imre, Bekes Nándor, Bíró Dániel, Elek Péter, Fajszi Bulcsú, Fehér 169 Szilveszter, Fekete Balázs Attila, Jakus Balázs István, Makovsky Mihály, Markó Gábor, Marozsák Tóbiás , Nagy 555 Botond, Németh 123 Balázs, Németh 777 Róbert, Olosz Adél, Páhoki Tamás, Paulovics Péter, Póta Balázs, Sal Dávid, Szakály Marcell, Szentivánszki Soma , Tóth 111 Máté .
4 points:Di Giovanni András, Kovács 124 Marcell.
3 points:1 student.
1 point:1 student.
0 point:1 student.


  • Problems in Physics of KöMaL, February 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley