 Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
 Already signed up? New to KöMaL?

# Problem A. 429. (May 2007)

A. 429. Find all pairs f(x), g(x) of polynomials with integer coefficients satisfying

f(g(x))=x2007+2x+1.

(Proposed by Katalin Gyarmati)

(5 pont)

Deadline expired on June 15, 2007.

Solution. Deriving the equation,

f'(g(x)).g'(x)=2007x2006+2.

By Eisenstein's criterion, the polynomial 2007x206+2 is irreducible. Hence, one of the two factors is constant. Since gcd(2007,2)=1, this constant must be 1 or -1.

If g'(x)=1 then g(x)=x+c with some integer c and f(x)=(x-c)2007+2(x-c)+1.

If g'(x)=-1 then g(x)=-x+c and f(x)=(-x+c)2007+2(-x+c)+1.

If f'(g(x))=1 then g'(x)=2007x2006+2. The degree of polynomial g(x) is 2007, and it attains infinitely many distinct values. So f'(g(x))=1 is possible only if f'(x)=1. Then f(x)=x+c and g(x)=x2007+2x+1-c.

Finally, if f'(g(x))=-1 then, similarly to the previous case, f'(x)=-1, f(x)=-x+c and g(x)=-x2007-2x-1+c.

### Statistics:

 8 students sent a solution. 5 points: Gyenizse Gergő, Hujter Bálint, Kisfaludi-Bak Sándor, Lovász László Miklós, Nagy 224 Csaba, Tomon István. 4 points: Nagy 235 János. Unfair, not evaluated: 1 solutions.

Problems in Mathematics of KöMaL, May 2007