Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 468. (December 2008)

A. 468. We are given two triangles. Their side lengths are a,b,c and A,B,C respectively, the areas are t and T, respectively. Prove that -a2A2+a2B2+a2C2+b2A2-b2B2+b2C2+c2A2+c2B2-c2C2\ge16tT.

(5 pont)

Deadline expired on January 15, 2009.


Solution. Let \gamma and \Gamma the two angles opposite to sides c and C, respectively. From the cosine law we have a2+b2-c2=2abcos \gamma and A2+B2-C2=2ABsin \Gamma; the two areas are t=\frac12ab\sin\gamma and T=\frac12AB\sin\Gamma.

Substituing these quantities,

-a2A2+a2B2+a2C2+b2A2-b2B2+b2C2+c2A2+c2B2-c2C2-16tT=

=2a2B2+2A2b2-(a2+b2-c2)(A2+B2-C2)-16tT=

=2a2B2+2A2b2-4abABcos \gammacos \Gamma-4abABsin \gammasin \Gamma=

=2(aB-Ab)2+4abAB(1-cos (\gamma-\Gamma))\ge0.


Statistics:

12 students sent a solution.
5 points:Blázsik Zoltán, Bodor Bertalan, Éles András, Márkus Bence, Nagy 235 János, Nagy 648 Donát, Somogyi Ákos, Tomon István, Tossenberger Anna, Varga 171 László, Wolosz János.
4 points:Backhausz Tibor.

Problems in Mathematics of KöMaL, December 2008