Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 566. (September 2012)

A. 566. (a) Prove that if n\ge2 and the product of the positive real numbers a_2,a_3,\ldots,a_n is 1 then {(1+a_2)}^2{(1+a_3)}^3
\cdots {(1+a_n)}^n >
\frac{n^n{(n-1)}^{n-1}}{4^{n-1}}. (b) Show an example for an integer n\ge2 and positive real numbers a_2,a_3,\ldots,a_n having product 1 that satisfy {(1+a_2)}^2{(1+a_3)}^3\ldots{(1+a_n)}^n < 1.000001 \cdot
\frac{n^n{(n-1)}^{n-1}}{4^{n-1}}.

(5 pont)

Deadline expired on October 10, 2012.


Solution. (a) For k\ge3, apply the AM-GM inequality to 1/(k-2) and ak/2 with the weights k-2 and 2:


\frac{1+a_k}{k} =
\frac{(k-2)\cdot\frac1{k-2}+2\cdot\frac{a_k}{2}}{k} \ge
\left(\frac{1}{k-2}\right)^{(k-2)/k}\cdot\left(\frac{a_k}{2}\right)^{2/k} =
\left(\frac{a_k^2}{4(k-2)^{k-2}}\right)^{1/k}


(1+a_k)^k \ge \frac{k^k}{4(k-2)^{k-2}}a_k^2.  (1)

We have equality if 1/(k-2)=ak/2, so a_k=\frac2{k-2}.

Taking the product for k=3,\ldots,n,


(1+a_2)^2 (1+a_3)^3 \ldots (1+a_n)^n =
(1+a_2)^2 \prod_{k=3}^n (1+a_k)^k \ge
(1+a_2^2) \prod_{k=3}^n \left(\frac{k^k}{4(k-2)^{k-2}}a_k^2\right) =


= \frac{(1+a_2)^2}{a_2^2} \cdot
\Big(\underbrace{a_2a_3\ldots a_n}_{1}\Big)^2 \cdot 
\prod_{k=3}^n \frac{k^k}{4(k-2)^{k-2}} =
\frac{(1+a_2)^2}{a_2^2} \cdot \frac{n^n(n-1)^{n-1}}{4^{n-2}\cdot1^1\cdot2^2} =
\frac{(1+a_2)^2}{a_2^2} \cdot \frac{n^n(n-1)^{n-1}}{4^{n-1}}.
(2)

The trivial estimate 1+a22>a22 completes the proof.

(b) We have equality in (2) if a_k=\frac2{k-2} for k\ge3; then the constraint a_2a_3\ldots a_n=1 enforces a_2=\frac1{a_3\ldots a_n}=
\prod_{k=3}^n\frac{k-2}2=\frac{(n-2)!}{2^{n-2}}.

It is easy to find that for n=14 we have a_2=\frac{14!}{2^{14}}=5320940.625 and \frac{(1+a_2)^2}{a_2^2} = \left(1+\frac1{a_2}\right)^2<1,000\;001, so


(1+a_2)^2 (1+a_3)^3 \ldots (1+a_n)^n =
\frac{(1+a_2)^2}{a_2^2} \cdot \frac{n^n(n-1)^{n-1}}{4^{n-1}} <
1{,}000\;001 \cdot \frac{n^n(n-1)^{n-1}}{4^{n-1}}.

Hence, a possible example is


n=16, \quad
(a_2,a_3,\ldots,a_{16})=
\left(\frac{14!}{2^{14}},\frac21,\frac22,\frac23,\ldots,\frac2{14}\right).


Statistics:

7 students sent a solution.
5 points:Herczeg József, Ioan Laurentiu Ploscaru, Janzer Olivér, Omer Cerrahoglu, Szabó 789 Barnabás, Szabó 928 Attila, Williams Kada.

Problems in Mathematics of KöMaL, September 2012