Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 694. (March 2017)

A. 694. Prove that the inequality

\(\displaystyle \frac1{\sqrt{2x}} + \frac1{\sqrt{2y}} + \frac2{\sqrt{x+y}} + 2 \ge \frac4{\sqrt{x+2}} + \frac4{\sqrt{y+2}} \)

holds for all pairs \(\displaystyle (x,y)\) of positive real numbers.

(5 pont)

Deadline expired on April 10, 2017.


Sorry, the solution is available only in Hungarian. Google translation

Megoldásvázlat. A feladat az A. 493. feladat speciális esete az \(\displaystyle n=3\), \(\displaystyle p_1=x\), \(\displaystyle p_2=y\), \(\displaystyle p_3=2\), \(\displaystyle a_1=a_2=1\), \(\displaystyle a_3=-2\), \(\displaystyle c=\tfrac12\) választással.

Bővebben: bármely \(\displaystyle p>0\) esetén, az \(\displaystyle u=pt\) helyettesítéssel

\(\displaystyle \int_{t=0}^\infty \frac{e^{-pt}}{\sqrt{t}} \mathrm{d}t = \int_{u=0}^\infty \frac{e^{-u}}{\sqrt{u/p}} \frac{\mathrm{d}t}{p} = \frac{1}{\sqrt{p}}\int_{u=0}^\infty \frac{e^{-u}}{\sqrt{u}} \mathrm{d}u = \frac{\Gamma(\tfrac12)}{\sqrt{p}}, \)

ezt felhasználva

\(\displaystyle B.O.-J.O. = \frac1{\sqrt{2x}} +\frac2{\sqrt{x+y}} +\frac1{\sqrt{2y}} -\frac4{\sqrt{x+2}} -\frac4{\sqrt{y+2}} +\frac{4}{\sqrt4} = \)

\(\displaystyle = \frac{1}{\Gamma(\tfrac12)} \int_0^\infty \Big( e^{-2xt}+2e^{-(x+y)t}+e^{-2yt}-4e^{-(x+2)t}-4e^{-(y+2)t}+4e^{-4t} \Big)\frac{\mathrm{d}t}{\sqrt{t}} = \)

\(\displaystyle = \frac{1}{\Gamma(\tfrac12)} \int_0^\infty \Big( e^{-xt}+e^{-yt}-2e^{-2t}\Big)^2 \frac{\mathrm{d}t}{\sqrt{t}} \ge 0. \)


Statistics:

5 students sent a solution.
5 points:Williams Kada.
0 point:4 students.

Problems in Mathematics of KöMaL, March 2017