Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Az A. 742. feladat (2019. január)

A. 742. Az \(\displaystyle \Omega\) körbe írt \(\displaystyle ABCD\) konvex húrnégyszög \(\displaystyle AD\) és \(\displaystyle BC\) oldalegyenesei az \(\displaystyle E\) pontban metszik egymást. Legyen \(\displaystyle M\) és \(\displaystyle N\) a többi csúcsot nem tartalmazó \(\displaystyle AB\), illetve \(\displaystyle CD\) körívek felezőpontja, továbbá legyen \(\displaystyle I\), \(\displaystyle J\), \(\displaystyle K\), és \(\displaystyle L\) rendre az \(\displaystyle ABD\), a \(\displaystyle ABC\), a \(\displaystyle BCD\), illetve a \(\displaystyle CDA\) háromszögbe írt kör középpontja. Messe \(\displaystyle \Omega\) az \(\displaystyle IJM\) és \(\displaystyle KLN\) köröket másodszor az \(\displaystyle U\ne M\), illetve a \(\displaystyle V\ne N\) pontban. Mutassuk meg, hogy az \(\displaystyle E\), \(\displaystyle U\) és \(\displaystyle V\) pontok egy egyenesre illeszkednek.

(7 pont)

A beküldési határidő 2019. február 11-én LEJÁRT.


Statisztika:

Az A. 742. feladat értékelése még nem fejeződött be.


A KöMaL 2019. januári matematika feladatai