Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 4236. (January 2010)

B. 4236. Let \(\displaystyle a\), \(\displaystyle b\) and \(\displaystyle c\) be the sides of triangle \(\displaystyle ABC\), let \(\displaystyle f_a\), \(\displaystyle f_b\) and \(\displaystyle f_c\) denote the lengths of the interior angle bisectors, and let \(\displaystyle t_a\), \(\displaystyle t_b\) and \(\displaystyle t_c\) be the segments of the interior angle bisectors that lie inside the circumscribed circle. Show that \(\displaystyle a^2b^2c^2= f_af_bf_ct_at_bt_c\).

(Mathematics Magazine, 1977)

(3 pont)

Deadline expired on February 10, 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Az ábra jelöléseit használva, a kerületi szögek tétele miatt az \(\displaystyle AYB\) szög ugyanakkora, mint az \(\displaystyle ACB\) szög, vagyis az \(\displaystyle AYB\) háromszög hasonló az \(\displaystyle ACX\) háromszöghöz. Ezért \(\displaystyle AC:AX=AY:AB\), ahonnan \(\displaystyle f_at_a=bc\). Hasonlóképpen kapjuk, hogy \(\displaystyle f_bt_b=ac\) és \(\displaystyle f_ct_c=ab\). E három összefüggést összeszorozva adódik a bizonyítandó állítás.


Statistics:

76 students sent a solution.
3 points:69 students.
2 points:3 students.
1 point:2 students.
0 point:1 student.
Unfair, not evaluated:1 solutions.

Problems in Mathematics of KöMaL, January 2010