Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 4266. (April 2010)

B. 4266. Let a1, a2, a3, a4 denote four consecutive elements in a row of Pascal's triangle. Prove that the numbers \frac{a_{1}}{a_{1}+a_{2}}, \frac{a_{2}}{a_{2}+a_{3}}, \frac{a_{3}}{a_{3}+a_{4}} form an arithmetic progression.

(3 pont)

Deadline expired on May 10, 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Ha (a számozást 0-tól kezdve) a Pascal-háromszög \(\displaystyle n\)-edik sorában vesszük az egymást követő \(\displaystyle a={n\choose k}\) és \(\displaystyle b={n\choose k+1}\) elemeket, akkor

\(\displaystyle \frac{a}{a+b}=\frac{{n\choose k}}{{n\choose k}+{n\choose k+1}}= \frac{{n\choose k}}{{n+1\choose k+1}}=\frac{k+1}{n+1}.\)

Ezért ha \(\displaystyle a_{1}\), \(\displaystyle a_{2}\), \(\displaystyle a_{3}\), \(\displaystyle a_{4}\) a Pascal-háromszög \(\displaystyle n\)-edik sorának egymást követő elemei, akkor a szóban forgó három tört egy olyan 3-tagú számtani sorozatot alkot, amelynek differenciája \(\displaystyle \frac{1}{n+1}\).


Statistics:

86 students sent a solution.
3 points:81 students.
2 points:4 students.
0 point:1 student.

Problems in Mathematics of KöMaL, April 2010