Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 4867. (April 2017)

B. 4867. The sum of the real numbers \(\displaystyle a\), \(\displaystyle b\), \(\displaystyle c\) and \(\displaystyle d\) is \(\displaystyle 0\). Let \(\displaystyle M=ab+bc+cd\) and \(\displaystyle N=ac+ad+bd\). Prove that at least one of the sums \(\displaystyle 20M+17N\) and \(\displaystyle 20N+17M\) is non-positive.

(Bulgarian problem)

(4 pont)

Deadline expired on May 10, 2017.

Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A \(\displaystyle 20M+17N\) és \(\displaystyle 20N+17M\) számok összege

\(\displaystyle 37(M+N)=37(ab+ac+ad+bc+bd+cd)=\)

\(\displaystyle =37\cdot \frac{(a+b+c+d)^2-(a^2+b^2+c^2+d^2)}{2}=-\frac{37}{2}(a^2+b^2+c^2+d^2)\leq 0,\)

így legalább az egyikük nem pozitív.


84 students sent a solution.
4 points:78 students.
3 points:2 students.
2 points:1 student.
1 point:1 student.
Unfair, not evaluated:2 solutionss.

Problems in Mathematics of KöMaL, April 2017