Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem B. 4885. (September 2017)

B. 4885. Let \(\displaystyle k\) and \(\displaystyle m\) be two distinct 14-digit positive integers, each containing two of each digit 1, 2, 3, 4, 5, 6 and 7 (like 22133456456717, for example). Prove that \(\displaystyle \frac km\) cannot be an integer.

(M&IQ)

(4 pont)

Deadline expired on October 10, 2017.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A 9-cel való oszthatósági szabály szerint a \(\displaystyle k\) és \(\displaystyle m\) számok 9-es maradéka ugyanannyi, mint a \(\displaystyle 2(1+2+3+4+5+6+7)=56\) szám 9-es maradéka, ami 2. Ha \(\displaystyle \frac{k}{m}=t\) egész lenne, akkor \(\displaystyle k=tm\) miatt a \(\displaystyle tm-k\) szám 9-cel osztható lenne. Mivel a \(\displaystyle k\) és \(\displaystyle m\) számok 9-es maradéka 2, ezért \(\displaystyle 9|2t-2=2(t-1)\) is teljesülne, ami csak akkor áll fenn, ha a \(\displaystyle t\) szám 9-es maradéka 1. Mivel \(\displaystyle k\ne m\) és \(\displaystyle k,m\) pozitívak, ezért \(\displaystyle t=k/m\) csak olyan egész szám lehetne, ami 1-nél nagyobb, és a 9-es maradéka 1. A legkisebb ilyen szám a 10, vagyis \(\displaystyle k/m\geq 10\)-nek kellene teljesülnie, ami ellentmondás, hiszen \(\displaystyle k\) és \(\displaystyle m\) egyaránt 14-jegyű számok.


Statistics:

186 students sent a solution.
4 points:106 students.
3 points:60 students.
2 points:10 students.
1 point:6 students.
0 point:4 students.

Problems in Mathematics of KöMaL, September 2017