Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 4931. (February 2018)

B. 4931. Prove that if \(\displaystyle a\), \(\displaystyle b\), \(\displaystyle c\) are the sides of a triangle then

\(\displaystyle \frac{a^2(b+c)+b^2(a+c)}{abc}>3. \)

(3 pont)

Deadline expired on March 12, 2018.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A háromszög-egyenlőtlenség szerint \(\displaystyle a+b>c\), ezt használva:

\(\displaystyle \frac{a^2(b+c)+b^2(a+c)}{abc}=\frac{ab(a+b)+(a^2+b^2)c}{abc}>\)

\(\displaystyle >\frac{abc+(a^2+b^2)c}{abc}=\frac{abc+(a-b)^2c+2abc}{abc}\geq \frac{3abc}{abc}=3,\)

hiszen \(\displaystyle (a-b)^2\geq 0\). Ezzel az állítást bizonyítottuk.


Statistics:

141 students sent a solution.
3 points:138 students.
1 point:2 students.
0 point:1 student.

Problems in Mathematics of KöMaL, February 2018