Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 5207. (December 2021)

B. 5207. Let \(\displaystyle n\ge 2\) be a natural number. Prove that there exist positive integers \(\displaystyle 2\le x_1<x_2<x_3< \dots<x_n\), such that

\(\displaystyle x_1!\cdot x_2!\cdot x_3!\cdot \dots \cdot x_n! \)

is a perfect square.

Proposed by J. Szoldatics, Budapest

(4 pont)

Deadline expired on January 10, 2022.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Ha \(\displaystyle n\ge 3\), akkor válasszuk meg az \(\displaystyle x_1<\ldots<x_{n-2}\) egészeket tetszőlegesen, és legyen \(\displaystyle A=x_1!\cdot\ldots\cdot x_{n-2}!\). Ha \(\displaystyle n=2\), akkor legyen \(\displaystyle A=1\). Végül legyen \(\displaystyle x_{n-1}=4A-1\) és \(\displaystyle x_n=4A\).

Elenőrizzük az \(\displaystyle x_1<\ldots<x_n\) feltételt. Az \(\displaystyle x_1<x_2<\ldots<x_{n-2}\) és az \(\displaystyle x_{n-1}<x_n\) egyenlőtlensőgek triviálisan teljesülnek. Ha \(\displaystyle n\ge3\), akkor \(\displaystyle x_{n-2} \le x_{n-2}! \le A < 4A-1 = x_{n-1}\) is teljesül.

Végül,

\(\displaystyle x_1!\cdot\ldots\cdot x_n! = A \cdot x_{n-1}!\cdot x_n! = A\cdot (4A-1)!\cdot (4A)! = \bigg(\dfrac{(4A)!}{2}\bigg)^2 \)

valóban négyzetszám.


Statistics:

131 students sent a solution.
4 points:98 students.
3 points:17 students.
2 points:8 students.
1 point:3 students.
Unfair, not evaluated:4 solutionss.

Problems in Mathematics of KöMaL, December 2021