Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 5322. (May 2023)

B. 5322. Prove that if

\(\displaystyle \frac{\cos\alpha}{s-b}-\frac{\cos\beta}{s-a}=\frac{\cos\alpha-\cos\beta}{s-c} \)

in a triangle, with conventional notations, then the triangle is right-angled or isosceles. (As usual, \(\displaystyle s\) denotes the semi-perimeter of the triangle.)

Proposed by G. Holló, Budapest

(5 pont)

Deadline expired on June 12, 2023.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A beírt kör \(\displaystyle r\) sugarára vonatkozó \(\displaystyle s-a = r \ctg{\frac{\alpha}{2}}\) összefüggés felhasználásával

\(\displaystyle \frac{\cos\alpha}{r\ctg\frac{\beta}{2}} - \frac{\cos\beta}{r\ctg\frac{\alpha}{2}} = \frac{\cos\alpha - \cos\beta }{r\ctg\frac{\gamma}{2}}. \)

Mindkét oldalt \(\displaystyle r\ctg\frac{\alpha}{2}\ctg\frac{\beta}{2}\ctg\frac{\gamma}{2}\)-vel megszorozva majd rendezve

\(\displaystyle \cos\alpha \ctg\frac{\alpha}{2}\ctg\frac{\gamma}{2} - \cos\beta \ctg\frac{\beta}{2}\ctg\frac{\gamma}{2} = (\cos\alpha - \cos\beta)\ctg\frac{\alpha}{2}\ctg\frac{\beta}{2}, \)

\(\displaystyle \cos\alpha \ctg\frac{\alpha}{2}\left( \ctg\frac{\gamma}{2} - \ctg\frac{\beta}{2} \right) = \cos\beta \ctg\frac{\beta}{2}\left( \ctg\frac{\gamma}{2} - \ctg\frac{\alpha}{2} \right). \)

Alkalmazzuk a \(\displaystyle \ctg x - \ctg y = \frac{\sin(y-x)}{\sin x \sin y}\) azonosságot a két zárójeles kifejezésre:

\(\displaystyle \cos\alpha \ctg\frac{\alpha}{2}\cdot\frac{\sin\frac{\beta -\gamma}{2} } {\sin\frac{\beta}{2}\sin\frac{\gamma}{2}} = \cos\beta \ctg\frac{\beta}{2}\cdot\frac{\sin\frac{\alpha -\gamma}{2} } {\sin\frac{\alpha}{2}\sin\frac{\gamma}{2}}. \)

Szorozva mindkét oldalt \(\displaystyle \sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}\)-vel:

\(\displaystyle \cos\alpha\cos \frac{\alpha}{2}\sin\frac{\beta -\gamma}{2} = \cos\beta\cos \frac{\beta}{2}\sin\frac{\alpha -\gamma}{2}. \)

A \(\displaystyle \cos y\sin x =\frac{1}{2}\left( \sin (x+y) + \sin (x-y)\right)\) azonosság alapján:

\(\displaystyle \frac{1}{2}\cos\alpha \left( \sin \frac{\alpha + \beta - \gamma }{2} + \sin \frac{\beta - \gamma - \alpha }{2} \right) = \frac{1}{2}\cos\beta \left( \sin \frac{\alpha + \beta - \gamma }{2} + \sin \frac{\alpha - \gamma - \beta }{2} \right), \)

\(\displaystyle \cos\alpha (\sin(90^{\circ}-\gamma) + \sin (\beta - 90^{\circ})) = \cos\beta (\sin(90^{\circ}-\gamma) + \sin (\alpha - 90^{\circ})), \)

\(\displaystyle \cos\alpha (\cos\gamma - \cos \beta ) = \cos\beta (\cos\gamma - \cos \alpha ), \)

\(\displaystyle \cos\gamma (\cos\alpha - \cos\beta) = 0. \)

Ez pontosan akkor teljesül, ha \(\displaystyle \cos\gamma = 0\), vagy \(\displaystyle \cos\alpha = \cos\beta\). Mivel háromszög szögeiről van szó, előbbiből \(\displaystyle \gamma = 90^{\circ}\), utóbbiból pedig \(\displaystyle \alpha = \beta\) következik.


Statistics:

45 students sent a solution.
5 points:Ali Richárd, Chrobák Gergő, Csilling Dániel, Csonka Illés, Czanik Pál, Czirják Márton Pál, Diaconescu Tashi, Hodossy Réka, Holló Martin, Inokai Ádám, Jármai Roland, Kerekes András, Kosztolányi Karina, Kovács Benedek Noel, Melján Dávid Gergő, Miklós Janka, Nguyen Kim Dorka, Prohászka Bulcsú, Romaniuc Albert-Iulian, Szakács Ábel, Tarján Bernát, Tusnády Sámuel, Varga Boldizsár, Veres Dorottya, Virág Lénárd Dániel.
4 points:Balaskó Imola, Bencz Benedek, Bodor Mátyás, Hosszu Noel, Op Den Kelder Ábel, Sütő Áron, Tran Dávid, Zömbik Barnabás.
3 points:5 students.
2 points:3 students.
0 point:3 students.

Problems in Mathematics of KöMaL, May 2023