Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 5406. (October 2024)

B. 5406. Prove that in any base-\(\displaystyle n\) number system, equality \(\displaystyle \sqrt{\frac{123456787654321}{1234321}}=10001\) holds, where \(\displaystyle n\ge 9\).

Proposed by Mihály Hujter, Budapest

(3 pont)

Deadline expired on November 11, 2024.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A megoldás során végig \(\displaystyle n\) alapú számrendszerben számolunk és feltesszük, hogy \(\displaystyle n\geq 9\).

A bizonyítandó állítás azzal ekvivalens, hogy \(\displaystyle 123456787654321=1234321\cdot 10001^2\). Mivel

\(\displaystyle 1234321\cdot 10001=12343210000+1234321=12344444321\)

és

\(\displaystyle 12344444321\cdot 10001=123444443210000+12344444321=123456787654321 \)

(nincs \(\displaystyle n\)-es átvitel, mert \(\displaystyle n\geq 9\)), ezért az állítás valóban teljesül.


Statistics:

136 students sent a solution.
3 points:108 students.
2 points:12 students.
1 point:6 students.
0 point:1 student.
Unfair, not evaluated:2 solutionss.
Not shown because of missing birth date or parental permission:3 solutions.

Problems in Mathematics of KöMaL, October 2024