Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 5439. (February 2025)

B. 5439. Rectangle \(\displaystyle ABCD\) satisfies \(\displaystyle AD<AB<2AD\). Let point \(\displaystyle O\) be chosen on side \(\displaystyle AB\) satisfying \(\displaystyle OB=AD\). The circle with center \(\displaystyle O\) and radius \(\displaystyle OB\) intersects side \(\displaystyle AD\) at point \(\displaystyle E\). Prove that the area of rectangle \(\displaystyle ABCD\) equals \(\displaystyle BE^2/2\).

Proposed by: Viktor Vígh, Sándorfalva

(3 pont)

Deadline expired on March 10, 2025.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Jelölje a téglalap oldalhosszúságait \(\displaystyle AB = CD = a\) és \(\displaystyle BC = DA = b\). Ekkor a feltételek szerint \(\displaystyle OB = OE = b\) és \(\displaystyle AO = a-b\).

A Pitagorasz-tétel szerint az \(\displaystyle AOE\) derékszögű háromszögben:

\(\displaystyle AE^2 = OE^2 - AO^2 = b^2 - (a-b)^2 = 2ab - a^2; \)

míg az \(\displaystyle ABE\) derékszögű háromszögben:

\(\displaystyle BE^2 = AB^2 + AE^2 = a^2 + (2ab - a^2) = 2ab, \)

azaz valóban az \(\displaystyle ABCD\) téglalap területének kétszerese.


Statistics:

111 students sent a solution.
3 points:98 students.
2 points:7 students.
1 point:3 students.
Not shown because of missing birth date or parental permission:1 solutions.

Problems in Mathematics of KöMaL, February 2025