Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem C. 1046. (October 2010)

C. 1046. Let \alpha(n) denote the measure of the interior angles of a regular n-sided polygon. What is n if \alpha(n+3)-\alpha(n)=\alpha(n)-\alpha(n-2)?

(5 pont)

Deadline expired on November 10, 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. \(\displaystyle \alpha(n)= (n-2)\cdot \frac{180^\circ}{n}\), ezért a feltételt í­gy írhatjuk fel (\(\displaystyle n\ge 3\)):

\(\displaystyle (n+1)\cdot \frac{180^\circ}{n+3}-(n-2)\cdot \frac{180^\circ}{n}=(n-2)\cdot \frac{180^\circ}{n}-(n-4)\cdot \frac{180^\circ}{n-2}. \)

\(\displaystyle 180^\circ\)-kal való egyszerűsí­tés és rendezés után \(\displaystyle \displaystyle{\frac{n+1}{n+3}+\frac{n-4}{n-2}=\frac{2(n-2)}{n}}\), majd \(\displaystyle n(n^2-n-2+n^2-n-12)=2(n-2)(n^2+n-6)\), amiből \(\displaystyle -14n=-16n+24\), ahonnan \(\displaystyle n=12\).


Statistics:

327 students sent a solution.
5 points:278 students.
4 points:11 students.
3 points:17 students.
2 points:4 students.
1 point:2 students.
0 point:8 students.
Unfair, not evaluated:7 solutionss.

Problems in Mathematics of KöMaL, October 2010