Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A C. 1495. feladat (2018. szeptember)

C. 1495. Tekintsük az alábbi egyenlőségsorozatot:

$$\begin{align*} 1 + 2 & = 3, \tag{1}\\ 4 + 5 + 6 & = 7 + 8, \tag{2}\\ 9 + 10 + 11 + 12 & = 13 + 14 + 15. \tag{3} \end{align*}$$

A megfigyelt szabály alapján írjuk fel a \(\displaystyle k\)-adik sort és bizonyítsuk annak helyességét.

Javasolta: Kertész Ádám (Miami Beach)

(5 pont)

A beküldési határidő 2018. október 10-én LEJÁRT.


Megoldás. A \(\displaystyle k\)-adik sor bal oldala \(\displaystyle k^2\)-tel kezdődik, majd egyesével növelve még \(\displaystyle k\) tagot kell hozzáadni. Jobb oldalra a bal oldali utolsó tagot egyesével növelve \(\displaystyle k\) tagú összeget írunk. (A jobb oldal utolsó tagja így \(\displaystyle k^2+k+k\), ami \(\displaystyle (k+1)^2-1\), tehát a következő sor 1. tagja így valóban \(\displaystyle (k+1)^2\) lesz.) Ez alapján a \(\displaystyle k\). sor:

\(\displaystyle k^2+(k^2+1)+...+(k^2+k)=\left((k^2+k)+1\right)+...+\left((k^2+k)+k\right),\)

\(\displaystyle (k+1) k^2+\frac{(1+k}2\cdot k=k\cdot k^2+\frac{k+1+k+k}{2}\cdot k,\)

\(\displaystyle k^3+k^2+\frac{k^2}{2}+\frac k2=k^3+\frac{3k+1}{2}\cdot k,\)

\(\displaystyle k^3+\frac{3k^2}{2}+\frac k2=k^3+\frac{3k^2}2+\frac k2.\)

Mivel a lépések ekvivalensek voltak, így a \(\displaystyle k\)-adik sorban lévő összefüggés igaz.


Statisztika:

114 dolgozat érkezett.
5 pontot kapott:Ajtai Boglárka, Andorfi István, Balaskó Dénes, Balogh Bence, Baráth László, Bolgár Janka, Borzon Márton, Bottlik Domonkos, Csahók Mihály, Csótai Zsófia, Debreczeni Tibor, Fülöp Sámuel Sihombing, Györfi Bence, Halász 237 Lajos, Hordós Adél Zita, Hunyadi Marcell, Jankovits András, Jost Márk Benedek, Juszt Anna, Kalabay László, Kardkovács Levente, Kim 666 Levente, Kis 194 Károly, Kovács-Deák Zsombor, Kozák 023 Balázs, Lukács Emma, Majerusz Ádám, Mészáros 916 Márton, Molnár 410 István, Német Franciska, Nyitrai Boglárka, Osvárt Bence Attila, Paksi Barnabás, Palencsár Enikő, Pálfi Bálint, Pálfi Fanni, Purzsa Aletta, Rosztoczy Csaba, Rozgonyi Gergely, Sal Dávid, Sebe Anna, Szalontai Kinga Sára, Szepesi Zoltán, Szigeti Donát, Teleki Sándor, Tóth 529 Petra.
4 pontot kapott:31 versenyző.
3 pontot kapott:10 versenyző.
2 pontot kapott:5 versenyző.
1 pontot kapott:4 versenyző.
0 pontot kapott:3 versenyző.
Nem számítjuk a versenybe a születési dátum vagy a szülői nyilatkozat hiánya miatt:15 dolgozat.

A KöMaL 2018. szeptemberi matematika feladatai