Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem C. 1634. (November 2020)

C. 1634. Prove the following inequality:

\(\displaystyle \frac{1}{4} +\frac{1}{28} +\frac{1}{70} +\cdots +\frac{1}{(3k-2)(3k+1)} +\cdots +\frac{1}{2017\cdot 2020} < \frac{1}{3}. \)

(5 pont)

Deadline expired on December 10, 2020.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Írjuk fel az összeg \(\displaystyle k\)-adik tagját

\(\displaystyle \frac{1}{(3k-2)(3k+1)}=\frac13 \left( \frac{1}{3k-2}-\frac{1}{3k+1} \right)\)

alakban az összes (673 darab) tagra, így a bal oldalon egy teleszkopikus összeget kapunk:

\(\displaystyle \frac13 \left( \frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10} + \dots+\frac{1}{2017}-\frac{1}{2020} \right)=\frac13 \left( 1-\frac{1}{2020} \right),\)

ami valóban kisebb \(\displaystyle \frac13\)-nál, értéke egészen pontosan \(\displaystyle \frac13-\frac{1}{6060}\). Ezzel a feladat állítását igazoltuk.


Statistics:

183 students sent a solution.
5 points:129 students.
4 points:25 students.
3 points:11 students.
2 points:5 students.
1 point:2 students.
0 point:1 student.
Unfair, not evaluated:10 solutionss.

Problems in Mathematics of KöMaL, November 2020