Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A C. 1652. feladat (2021. február)

C. 1652. Két derékszögű háromszögnek egységnyi a rövidebb befogója. Mindkettő háromszögben a derékszögnél levő csúcs egységnyire van az átfogó harmadolópontjától: az egyik esetében a közelebbi, a másik esetében a távolabbi harmadolóponttól. Igazoljuk, hogy a háromszögek egységtől különböző oldalai között van három, amelyből derékszögű háromszög szerkeszthető.

(5 pont)

A beküldési határidő 2021. március 10-én LEJÁRT.


1. megoldás. Tekintsük a következő ábrát, amelyen a feladatban szereplő mindkét háromszöget ábrázoltuk.

A feltételeknek megfelelően az \(\displaystyle ABC\) háromszögben az \(\displaystyle AB\) átfogó \(\displaystyle B\)-hez közelebbi harmadolópontja \(\displaystyle H\), míg az \(\displaystyle A'B'C'\) háromszögben az \(\displaystyle A'B'\) átfogó \(\displaystyle A'\)-höz közelebbi harmadolópontja \(\displaystyle H'\).

A \(\displaystyle H\), illetve \(\displaystyle H'\) pontból merőlegest állítottunk az \(\displaystyle AC\), illetve \(\displaystyle A'C'\) befogókra, így kaptuk az egyik háromszögben a \(\displaystyle D\), a másikban a \(\displaystyle D'\) pontot.

Nyilvánvaló, hogy \(\displaystyle BC\parallel{HD}\) és \(\displaystyle B'C'\parallel{H'D'}\), ezért alkalmazhatjuk a párhuzamos szelők, illetve szelőszakaszok tételét. Ennek megfelelően az \(\displaystyle ABC\) háromszögben a \(\displaystyle BH=x\) és \(\displaystyle CD=b\) jelöléssel azt kapjuk, hogy:

\(\displaystyle AH=2x;\qquad{AD=2b},\)

valamint

\(\displaystyle HD=\frac{2}{3}.\)

Hasonlóképpen kapjuk az \(\displaystyle A'B'C'\) háromszögből az \(\displaystyle A'H'=y\) és \(\displaystyle A'D'=b'\) jelöléssel:

\(\displaystyle B'H'=2y;\qquad{C'D'=2b'},\)

illetve

\(\displaystyle H'D'=\frac{1}{3}.\)

A \(\displaystyle HCD\) és \(\displaystyle H'C'D'\) derékszögű háromszögekben felírjuk a Pitagorasz-tételt:

\(\displaystyle (1)\)\(\displaystyle b^2+\Bigg(\frac{2}{3}\Bigg)^2=1,\)

valamint

\(\displaystyle (2)\)\(\displaystyle (2b')^2+\Bigg(\frac{1}{3}\Bigg)^2=1.\)

Az (1) és (2) egyenletek megoldásával:

\(\displaystyle b=\frac{\sqrt{5}}{3}; \qquad{b'=\frac{\sqrt{2}}{3}}.\)

Ebből az következik, hogy az \(\displaystyle ABC\) háromszögben \(\displaystyle AC=3b=\sqrt{5}\), és így a Pitagorasz-tételből adódóan \(\displaystyle AB=\sqrt{6}\). Hasonlóan egyszerűen kapjuk, hogy az \(\displaystyle A'B'C'\) háromszögben \(\displaystyle A'C'=3b'=\sqrt{2}\), és így a Pitagorasz-tétel felhasználásával \(\displaystyle A'B'=\sqrt{3}\). A feladat feltételeinek megfelelő két derékszögű háromszög egységtől különböző oldalai tehát:

\(\displaystyle AB=\sqrt{6},\quad AC=\sqrt{5};\qquad{A'B'=\sqrt{3},\quad A'C'=\sqrt{2}}.\)

A Pitagorasz-tétel megfordítása alapján könnyen látható, hogy az \(\displaystyle AC, A'B', A'C'\) szakaszokból derékszögű háromszög szerkeszthető (éspedig a négy szakasz közül csak ebből a háromból), hiszen

\(\displaystyle \big(\sqrt{5}\big)^2=\big(\sqrt{3}\big)^2+\big(\sqrt{2}\big)^2.\)

Ezzel a megoldást befejeztük.

2. megoldás. Illesszük össze a két derékszögű háromszöget úgy, hogy az egységnyi befogójuk azonos legyen, ezzel a másik két befogó egyenese is ugyanaz az egyenes lesz. Tekintsük a következő ábrát, amelyen a \(\displaystyle C\) pontból az \(\displaystyle A, B, D, E, F\) pontokba rendre az \(\displaystyle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}, \overrightarrow{e}, \overrightarrow{f}\) vektorokat indítottuk, ahol az \(\displaystyle AB\) átfogó \(\displaystyle A\)-hoz közelebbi harmadolópontja \(\displaystyle E\) és a másik háromszög \(\displaystyle AD\) átfogójának \(\displaystyle A\)-tól távolabbi harmadolópontja \(\displaystyle F\).

Az \(\displaystyle \overrightarrow{a}, \overrightarrow{e}, \overrightarrow{f}\) vektorok hossza a feltételek szerint egységnyi, azaz \(\displaystyle |\overrightarrow{a}|=|\overrightarrow{e}|=|\overrightarrow{f}|=1.\) A továbbiakban a \(\displaystyle \overrightarrow{b}\) és \(\displaystyle \overrightarrow{d}\) vektorok hosszának megállapítására törekszünk. Az \(\displaystyle \overrightarrow{AB}\) és az \(\displaystyle \overrightarrow{AD}\) vektorok előállíthatók az \(\displaystyle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}\) vektorok segítségével a következőképpen:

\(\displaystyle (1)\)\(\displaystyle \overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a};\qquad{\overrightarrow{AD}=\overrightarrow{d}-\overrightarrow{a}}.\)

Az \(\displaystyle E\) és \(\displaystyle F\) pontok rendre az \(\displaystyle AB\) és \(\displaystyle AD\) oldalak \(\displaystyle A\)-hoz közelebbi, illetve távolabbi harmadolópontjai, ezért (1) szerint:

\(\displaystyle (2)\)\(\displaystyle \overrightarrow{AE}=\frac{1}{3}\cdot(\overrightarrow{b}-\overrightarrow{a});\qquad{\overrightarrow{AF}=\frac{2}{3}\cdot(\overrightarrow{d}-\overrightarrow{a})}.\)

Ugyanakkor \(\displaystyle \overrightarrow{e}=\overrightarrow{a}+\overrightarrow{AE}\) és \(\displaystyle \overrightarrow{f}=\overrightarrow{a}+\overrightarrow{AF}\), ebből (2) felhasználásával azt kapjuk, hogy

\(\displaystyle (3)\)\(\displaystyle \overrightarrow{e}=\frac{2}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow{b};\qquad{\overrightarrow{f}=\frac{1}{3}\overrightarrow{a}+\frac{2}{3}\overrightarrow{d}}.\)

Ismeretes, hogy az \(\displaystyle \overrightarrow{u}\) és \(\displaystyle \overrightarrow{v}\) vektorok skaláris szorzata

\(\displaystyle \overrightarrow{u}\cdot\overrightarrow{v}=|\overrightarrow{u}|\cdot|\overrightarrow{v}|\cdot\cos{\varphi},\)

ahol \(\displaystyle \varphi\) a két vektor iránya által bezárt szög. Képezzük a (3) alatti vektorok önmagukkal való skaláris szorzatát. Mivel egy vektor önmagával \(\displaystyle 0^{\circ}\)-os szöget zár be, és így \(\displaystyle \cos{\varphi}=1\), ezért ezek a skaláris szorzatok a vektorok hosszának négyzetét fogják adni, vagyis mind az \(\displaystyle \overrightarrow{e}\), mind az \(\displaystyle \overrightarrow{f}\) esetén \(\displaystyle 1\)-et. Felhasználjuk még azt, hogy az \(\displaystyle \overrightarrow{a}\) és \(\displaystyle \overrightarrow{b}\), illetve \(\displaystyle \overrightarrow{a}\) és \(\displaystyle \overrightarrow{d}\) vektorok skaláris szorzata zérus, hiszen ezek a vektorpárok merőlegesek egymásra és így \(\displaystyle \cos{\varphi}=0\).

Ebből következően:

\(\displaystyle (4)\)\(\displaystyle \frac{4}{9}+\frac{1}{9}b^2=1;\qquad{\frac{1}{9}+\frac{4}{9}d^2}=1,\)

ahol \(\displaystyle |\overrightarrow{b}|=b\) és \(\displaystyle |\overrightarrow{d}|=d\). A (4) egyenletek megoldásával azt kapjuk, hogy

\(\displaystyle b=\sqrt{5};\qquad{d=\sqrt{2}}.\)

A Pitagorasz-tétel alkalmazásával megkapjuk az ábra háromszögeinek hiányzó oldalait, és ezzel a feladat feltételeinek megfelelő derékszögű háromszögek egységtől különböző oldalai:

\(\displaystyle AB=\sqrt{6},\quad CB=\sqrt{5};\qquad{AD=\sqrt{3},\quad CD=\sqrt{2}}.\)

A Pitagorasz-tétel megfordítása szerint az \(\displaystyle CB, AD, CD\) szakaszokból derékszögű háromszög szerkeszthető (a négy szakasz közül csak ebből a háromból), mivel

\(\displaystyle \big(\sqrt{5}\big)^2=\big(\sqrt{3}\big)^2+\big(\sqrt{2}\big)^2.\)

Ezzel a megoldást befejeztük.


Statisztika:

A C. 1652. feladat értékelése még nem fejeződött be.


A KöMaL 2021. februári matematika feladatai