Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem C. 1793. (January 2024)

C. 1793. Function \(\displaystyle f\) defined on the real numbers satisfies the following two conditions (for all \(\displaystyle x \in \mathbb{R}\)):

\(\displaystyle (1)\)\(\displaystyle f(x)=f(147-x),\)
\(\displaystyle (2)\)\(\displaystyle f(x+100)=f(46-x).\)

Find the value of \(\displaystyle f(200)+f(201)+f(202)\), if we also know that \(\displaystyle f(50)+f(51)+f(52)+f(53)=2024\).

Proposed by Katalin Abigél Kozma, Győr

(5 pont)

Deadline expired on February 12, 2024.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Az \(\displaystyle (1)\)-es feltétel miatt \(\displaystyle f(x+100)=f(147-(x+100))=f(47-x)\). Ezt \(\displaystyle (2)\)-vel összevetve \(\displaystyle f(47-x)=f(46-x)\) minden valós \(\displaystyle x\)-re, ami azt jelenti, hogy alkalmasan megválasztva \(\displaystyle x\)-et \(\displaystyle f(50)=f(51)=f(52)=f(53)= \ldots =f(200)=f(201)=f(202)\). Létezik is ilyen függvény, például a konstansfüggvény kielégíti az összes feltételt. Az előzőek alapján \(\displaystyle 4 \cdot f(50)=2024\), amiből \(\displaystyle f(50)=2024/4=506.\) Ekkor \(\displaystyle 506=f(200)=f(201)=f(202)\), azaz a megoldás

\(\displaystyle f(200)+f(201)+f(202)=3 \cdot 506=1518.\)


Statistics:

153 students sent a solution.
5 points:67 students.
4 points:45 students.
3 points:8 students.
2 points:1 student.
1 point:4 students.
0 point:5 students.
Unfair, not evaluated:3 solutionss.
Not shown because of missing birth date or parental permission:12 solutions.

Problems in Mathematics of KöMaL, January 2024