Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A K. 676. feladat (2020. december)

K. 676. Egy \(\displaystyle 6\times6\)-os sakktáblát 18 darab \(\displaystyle 1\times2\)-es dominóval átfedés nélkül lefedünk. Mutassuk meg, hogy a sakktábla kettévágható egy egyenessel úgy, hogy az egyetlen dominót sem vág ketté.

(6 pont)

A beküldési határidő 2021. január 11-én LEJÁRT.


Megoldás. Ha egy rácsegyenes átvág egy dominót, akkor át kell vágjon még egyet. Ellenkező esetben a többi dominó által lefedett kis négyzetek száma az egyenes mindkét oldalán páratlan számú lenne. Páratlan számú kis négyzetet azonban nem lehet lefedni 1x2-es dominókkal. Tehát ahhoz, hogy mind a 18 dominót átvágjuk, legfeljebb 9 egyenes szükséges, mert minden egyenes legalább két dominót vág ketté, és egy dominót csak egy egyenes vághat ketté. Azonban nekünk 10 rácsegyenesünk van, így legalább egy rácsegyenesnek már nem jut olyan dominó, amit kettévághatna.


Statisztika:

A K. 676. feladat értékelése még nem fejeződött be.


A KöMaL 2020. decemberi matematika feladatai