Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem K. 831. (November 2024)

K. 831. We have arranged four congruent rectangles according to the figure obtaining a large outer and a small inner square. The ratio of the areas of the large square and a single rectangle is \(\displaystyle 25:6\), and the area of the inner small square is \(\displaystyle 144~\mathrm{cm}^2\). Find the lengths of the sides of the rectangles.

(5 pont)

Deadline expired on December 10, 2024.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Legyen a nagy négyzet területe \(\displaystyle 25x\), a téglalapé \(\displaystyle 6x\). Ekkor a kis négyzet területe \(\displaystyle 25x - 4\cdot6x = x\), tehát \(\displaystyle x = 144 \textrm{ cm}^2\), azaz a nagy négyzet területe \(\displaystyle 25\cdot144 = 3600 \textrm{ cm}^2\). A nagy négyzet oldala ennek megfelelően \(\displaystyle 60 \) cm. Az ábrán a téglalapok rövidebb oldalát a-val jelölve \(\displaystyle a+12+a = 60\) cm, azaz \(\displaystyle a = 24\) cm. A téglalap hosszabbik oldala szintén az ábra alapján \(\displaystyle a+12 = 36\) cm.


Statistics:

146 students sent a solution.
5 points:78 students.
4 points:18 students.
3 points:12 students.
2 points:7 students.
1 point:6 students.
0 point:2 students.
Unfair, not evaluated:3 solutionss.
Not shown because of missing birth date or parental permission:20 solutions.

Problems in Mathematics of KöMaL, November 2024