Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem P. 4961. (October 2017)

P. 4961. An object executes simple harmonic motion of period \(\displaystyle T=0.2\) s. It takes \(\displaystyle \Delta t=0.01\) s to double its displacement of \(\displaystyle x=3\) cm. What is the amplitude of the motion?

(4 pont)

Deadline expired on November 10, 2017.

Sorry, the solution is available only in Hungarian. Google translation

Megoldás. 0,01 s alatt a rezgés fázisa \(\displaystyle \varphi=\frac{2\pi}{T}\Delta t=\tfrac1{10}\,\pi\) radiánt, vagyis \(\displaystyle 18^\circ\)-ot változik. A megadott feltétel szerint

\(\displaystyle A\sin(\omega t+ 18^\circ)=2A\sin(\omega t),\)


\(\displaystyle \cos18^\circ\sin(\omega t)+\sin18^\circ\cos(\omega t)=2\sin(\omega t),\)


\(\displaystyle \tg(\omega t)=\frac{\sin18^\circ}{(2-\cos18^\circ)}=0{,}295.\)


\(\displaystyle A=\frac{x}{\sin(\omega t)}=\frac{3~\rm cm}{0{,}283}\approx 10{,}6~\rm cm.\)


90 students sent a solution.
4 points:71 students.
3 points:4 students.
2 points:5 students.
1 point:7 students.
0 point:3 students.

Problems in Physics of KöMaL, October 2017