Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Lejárt határidejű KÖMAL feladatokról

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]  

Szeretnél hozzászólni? Jelentkezz be.
[1014] Lpont2016-02-18 15:28:43

Nehezítsük a C.1330. feladatot úgy, hogy az alábbi szövegezésű legyen:

Hány különböző, téglalap alakú montázst készíthetünk négy különböző MÉRETŰ, 2:3 képarányú fotóból? (A fényképeket nagyíthatjuk, de nem forgathatjuk el, és két montázst ugyanolyannak tekintünk, ha nagyítással megkaphatóak egymásból.)

[1013] rizsesz2016-02-09 11:35:39

A nem túl barátságos C.1321-hez érdekes olvasmány: http://oeis.org/A008406

[1012] csábos2016-02-04 20:56:42

És hányféleképpen helyezhetsz el 8 bástyát, ha mind sötét?

És hányféleképpen helyezhetsz el 8 bástyát, ha nem tudod hány sötét és hány világos van?

Nem feszítem tovább a húrt, ez arra volt példa, hogy a C1322. Példa megoldása mimindent nem vett figyelembe. Bónuszkérdés: Melyik feladat megoldása a &tex;\displaystyle 64^8&xet;?

Előzmény: [1011] rizsesz, 2016-02-04 12:05:00
[1011] rizsesz2016-02-04 12:05:00

64 a nyolcadikon (megint eggyel visszábbra)

Előzmény: [1010] csábos, 2016-02-04 00:55:28
[1010] csábos2016-02-04 00:55:28

És hányféleképpen lehet elhelyezni 8 bástyát egy sakktáblán, ha egy mezőre csak egy bástya kerülhet?

Előzmény: [1009] rizsesz, 2016-02-03 21:36:53
[1009] rizsesz2016-02-03 21:36:53

Az 64 alatt a 8 (es persze csereljuk a ket valaszomat :)).

Előzmény: [1008] csábos, 2016-02-03 10:15:54
[1008] csábos2016-02-03 10:15:54

És hányféleképpen helyezhetünk el 8 bástyát úgy, hogy azok ne üssék egymás?

Előzmény: [1007] rizsesz, 2016-02-02 23:48:59
[1007] rizsesz2016-02-02 23:48:59

ha rogzitjuk az A1 mezot, akkor szerintem 8!

Előzmény: [1006] csábos, 2016-02-02 22:49:33
[1006] csábos2016-02-02 22:49:33

Kedves Rizsesz!

Hányfélképpen lehet elhelyezni 8 bástyát egy sakktáblán?

Előzmény: [1005] rizsesz, 2016-02-02 21:21:06
[1005] rizsesz2016-02-02 21:21:06

igazából csak nem tárgyal dolgokat (hogy pl 7 hogyan állítható elő 3 szám összegeként)

Előzmény: [1004] Róbert Gida, 2016-02-01 22:58:25
[1004] Róbert Gida2016-02-01 22:58:25

C1322. megoldása teljesen hibás. Ha a közölt gondolatmenetet követném 7 jegyű számok helyett 9 jegyű számokra, akkor a 999950049-t kapnám megoldásnak: legnagyobb szám négyjegyű lehet a sorozatban, kezdjük 9999-cel a számot stb. DE a helyes megoldás természetesen a 999999999.

Az számomra külön rejtély a közölt megoldásnál, hogy miért a szám elejére kell(?) berakni a legnagyobb számot. Például a 8,9,10 olyan számtani sorozat, ahol 8910>1098, azaz a legkisebb számmal kezdve nagyobb lesz az összerakott szám!

[1003] nadorp2015-12-12 17:55:16

A654 feladat hivatalos megoldása egy kicsit másképp (számolósabb viszont direkt adja a felső becslést)

A P(x)-re tett feltételből következik, hogy

&tex;\displaystyle x\in[0,1]&xet; esetén &tex;\displaystyle |xP(x^2)|\leq1&xet;

De a &tex;\displaystyle Q(x)=xP(x^2)&xet; polinom páratlan, ezért

&tex;\displaystyle x\in[-1,1]&xet; esetén &tex;\displaystyle |Q(x)|=|xP(x^2)|\leq1&xet;

Legyen &tex;\displaystyle x_k=\cos\frac{k\pi}{2n+1} (0\leq k\leq 2n+1)&xet; Ekkor &tex;\displaystyle 1=x_0>x_1>...>x_{2n+1}=-1&xet; olyan nullától különböző valós számok, melyekre &tex;\displaystyle x_k=-x_{2n+1-k}&xet;. Mivel Q(x) 2n+1-ed fokú fokú polinom, ezért az &tex;\displaystyle x_k&xet; helyeken felvett értékek egyértelműen meghatározzák, így Q(x) Lagrange-féle interpolációs polinomja:

&tex;\displaystyle Q(x)=\sum_{k=0}^{2n+1}\prod_{i\neq k}\frac{x-x_i}{x_k-x_i}Q(x_k)&xet;

Bevezetve az &tex;\displaystyle f(x)=\prod_{k=0}^{2n+1}(x-x_k)=\prod_{k=0}^n(x^2-x_k^2)&xet; jelölést

&tex;\displaystyle Q(x)=f(x)\sum_{k=0}^{2n+1}\frac{Q(x_k)}{(x-x_k)f'(x_k)}=f(x)\sum_{k=0}^{n}\left(\frac{Q(x_k)}{(x-x_k)f'(x_k)}+\frac{Q(x_{2n+1-k})}{(x-x_{2n+1-k})f'(x_{2n+1-k})}\right)=f(x)\sum_{k=0}^{n}\left(\frac{Q(x_k)}{(x-x_k)f'(x_k)}+\frac{Q(-x_k)}{(x-(-x_k))f'(-x_k)}\right)&xet;

Mivel f(x) páros, ezért &tex;\displaystyle f'(x)&xet; páratlan, továbbá Q(x) is páratlan, így

&tex;\displaystyle Q(x)=f(x)\sum_{k=0}^{n}\frac{Q(x_k)}{f'(x_k)}\left(\frac1{x-x_k}+\frac1{x+x_k}\right)&xet;, azaz

(1)&tex;\displaystyle P(x^2)=\frac{Q(x)}x=2f(x)\sum_{k=0}^{n}\frac{Q(x_k)}{(x^2-x_k^2)f'(x_k)} &xet;

Innen &tex;\displaystyle |Q(x_k)|\leq1&xet; miatt

(2)&tex;\displaystyle |P(0)|\leq2|f(0)|\sum_{k=0}^{n}\frac1{x_k^2|f'(x_k)|} &xet;

Most megmutatjuk hogy (2) jobb oldala 2n+1, amivel a feladat állítását is igazoltuk.

Vegyük észre, hogy (1) második egyenlősége tetszőleges 2n+1-ed fokú, páratlan polinomra igaz, azaz speciálisan a &tex;\displaystyle T_{2n+1}(x)&xet; 2n+1-dik elsőfajú Csebisev-polinomra is.

( Jól ismert, hogy &tex;\displaystyle T_{2n+1}(x)&xet; olyan 2n+1-ed fokú polinom, melyre &tex;\displaystyle T_{2n+1}(\cos t)=\cos(2n+1)t&xet;

továbbá az &tex;\displaystyle x=\cos t&xet; helyettesítéssel &tex;\displaystyle T_{2n+1}(-x)=T_{2n+1}(-\cos t)=T_{2n+1}(\cos(\pi-t))=\cos((2n+1)(\pi-t))=-\cos(2n+1)t=-T_{2n+1}(x)&xet;, azaz &tex;\displaystyle T_{2n+1}(x)&xet; páratlan is.)

&tex;\displaystyle \frac{T_{2n+1}(x)}x=2f(x)\sum_{k=0}^{n}\frac{T_{2n+1}(x_k)}{(x^2-x_k^2)f'(x_k)}&xet;

Mivel &tex;\displaystyle T_{2n+1}(x_k)=\cos k\pi=(-1)^k&xet;, továbbá &tex;\displaystyle f'(x_k)&xet; előjelére &tex;\displaystyle sgn(f'(x_k))=sgn\prod_{i\neq k}(x_k-x_i)=(-1)^k&xet;, ezért

&tex;\displaystyle \frac{T_{2n+1}(x)}x=2f(x)\sum_{k=0}^{n}\frac{(-1)^k}{(x^2-x_k^2)(-1)^k|f'(x_k)|}=2f(x)\sum_{k=0}^{n}\frac1{(x^2-x_k^2)|f'(x_k)|}&xet;. Tehát

&tex;\displaystyle 2|f(0)|\sum_{k=0}^{n}\frac1{x_k^2|f'(x_k)|}=\left|\lim_{x\to0}\frac{T_{2n+1}(x)}x\right|=\left|\lim_{t\to\frac\pi2}\frac{\cos(2n+1)t}{\cos t}\right|=2n+1&xet;

[1002] Róbert Gida2015-11-25 21:23:58

A megoldásom az A.652.-re: Legyen &tex;\displaystyle a=a_0&xet; és &tex;\displaystyle b=a_1&xet;, ekkor, ha &tex;\displaystyle \frac {1}{a_i}&xet; számtani sorozatot alkot, akkor &tex;\displaystyle \frac{1}{a_k}=k*(\frac 1b-\frac 1a)+\frac 1a=\frac{k*(a-b)+b}{a*b}=\frac{k*d+b}{a*b}&xet;, ahol &tex;\displaystyle d=a-b<0&xet; egész. Az, hogy &tex;\displaystyle a_k&xet; egész azzal ekvivalens, hogy &tex;\displaystyle (k*d+b)|(a*b)&xet;; és ez minden &tex;\displaystyle 0\le k \le n&xet;-re kell. Legyen &tex;\displaystyle p\le n&xet; prím, 2 eset van: &tex;\displaystyle p|d&xet; vagy &tex;\displaystyle d&xet; nem osztható &tex;\displaystyle p&xet;-vel, ez utóbbi esetben &tex;\displaystyle k*d+b&xet; (&tex;\displaystyle k=0,..,p-1&xet;-re) teljes maradékrendszert alkot modulo p, így az egyik osztható &tex;\displaystyle p&xet;-vel, de akkor &tex;\displaystyle (a*b)&xet; is. De mindkét esetben igaz, hogy &tex;\displaystyle p|(a*b*|a-b|)&xet;, így &tex;\displaystyle \prod_{p prim; 2\le p \le n}p|(a*b*(|a-b|)&xet;. Triviálisan b<2*a (különben &tex;\displaystyle \frac {1}{a_2}\le 0&xet;); így &tex;\displaystyle \prod_{p prim; 2\le p \le n}p<2*a^3&xet;, de ismert, hogy &tex;\displaystyle n&xet;-ig a prímek szorzata nagyobb, mint &tex;\displaystyle C_1^n&xet; (&tex;\displaystyle C_1>1&xet;-re). Ebből pedig &tex;\displaystyle a=a_0>C^n&xet; fix &tex;\displaystyle C>1&xet;-re.

Előzmény: [1001] w, 2015-11-23 19:43:11
[1001] w2015-11-23 19:43:11

Az A.650. feladat egy lehetséges megoldása itt olvasható.

Az A.652. feladat kihozható némileg egyszerűbben. (Amúgy is valószínűnek tartom, hogy az osztott differencia alkalmazása inkább a tanulságosságra, mint az egyszerűségre való törekvés következménye.) A megoldásom kulcsa a következő lemma volt, ami szerintem önmagában is érdekes tétel:

Ha &tex;\displaystyle 0<u_1<u_2<\dots&xet; végtelen számtani sorozat tagjai relatív prímek a differenciához, és

&tex;\displaystyle T=\frac{u_1u_2\dots u_n}{n!},\qquad L=lkkt(u_1,u_2,\dots,u_n),&xet;

akkor &tex;\displaystyle \frac{L}{T}&xet; pozitív egész szám.

[1000] w2015-10-21 21:17:43

Még egy bizonyítás: itt.

Előzmény: [999] w, 2015-10-18 20:56:54
[999] w2015-10-18 20:56:54

B.4731, minimummeghatározás vázlatosan:

Négyzetreemelés, majd még egy négyzetreemelés után látszik, hogy elég a következőket bizonyítani:

&tex;\displaystyle ab+bc+ca\ge 2,&xet;

&tex;\displaystyle ab^2+bc^2+ca^2\ge 2.&xet;

Az előbbi adódik abból, hogy &tex;\displaystyle ab+bc=b(a+c)=b(3-b)\ge 2&xet;, ha &tex;\displaystyle b\in [1;2]&xet;. (Permutálhatjuk a változókat úgy, hogy &tex;\displaystyle b\in[1;2]&xet; legyen, ezért működtethető ez a becslés.)

Az utóbbi pedig az &tex;\displaystyle (a,b,c)=(2-x,2-y,2-z)&xet; helyettesítés után varázslatos módon az ismert

&tex;\displaystyle xy^2+yz^2+zx^2\le 4&xet;

becslésre vezethető vissza.

(A helyettesítés motivációja az volt, hogy a minimumhelyek kellemetlen módon függtek a &tex;\displaystyle [0;2]&xet; intervallumba szorítástól - ez a tulajdonság teszi nehézzé a feladatot szerintem. Hogyha "áttükrözzük" a változókat, az egyenlőtlenség iránya megváltozik, és a maximumhelyek már ugyanazok a &tex;\displaystyle [0;2]&xet; és &tex;\displaystyle [0;3]&xet; intervallumban, így már a becslésnél nem kell figyelnünk az intervallum specialitására.)

[998] w2015-10-15 17:35:56

Akit érdekel, B.4727-nek egy nehezebb változata található a 2005-ös ISL-ben:

&tex;\displaystyle f(x+y)+f(x)f(y)=f(xy)+2xy+1.&xet;

Hasznos feladat olyan szempontból, hogy szerintem jól tanítja a többféle megoldású függvényegyenletek megoldásainak különválasztását.

[997] w2015-10-15 17:30:58

Ezúttal csak a megoldás hibás, a feladat nem. A könnyű alsó becslés elkerülése végett direkt &tex;\displaystyle [0;2]&xet;-vel javasoltam a feladatot, helyesen is tűzték ki, és valóban a &tex;\displaystyle (2,1,0)&xet; és ciklikus permutáltjai adják a minimumot. Ha érdekel, be is bizonyíthatod (megengedem).

Előzmény: [996] Róbert Gida, 2015-10-15 16:05:42
[996] Róbert Gida2015-10-15 16:05:42

Elvileg nem kell ezért újra kitűzni a feladatot.

Géppel megnézve néhány millió esetet szerintem: &tex;\displaystyle a=0,b=2,c=1&xet; (illetve ennek ciklikus permutációi) adja a minimumot, ami 3. (végülis a 3-t eltalálták, csak gyökjel nélkül kell).

Előzmény: [995] nadorp, 2015-10-15 15:41:29
[995] nadorp2015-10-15 15:41:29

B. 4731. Legyen &tex;\displaystyle 0\leq a,b,c \leq 2&xet; ....

A fentiek tükrében a hivatalos megoldásban az alsó becslés hibás, mert a feltétellel ellentétben pld. az a=b=0, c=3 esetben hozza a minimumot.

[994] Róbert Gida2015-10-14 18:55:42

Lejárt A.647. megoldása (hivatalos megoldástól különböző). &tex;\displaystyle k=0&xet;-ra igaz, mert &tex;\displaystyle n&xet;>1-re &tex;\displaystyle n&xet;! nem négyzetszám. Használjuk Csebisev tételét, &tex;\displaystyle (\frac n2,n]&xet;-ben van prím, ha &tex;\displaystyle n>1&xet;, de akkor &tex;\displaystyle p&xet; kitevője &tex;\displaystyle n!&xet;-ban 1, így &tex;\displaystyle n&xet;! nem négyzetszám, azaz a keresett &tex;\displaystyle A,B&xet; halmaz nem létezhet.

Ha &tex;\displaystyle n\ge p>k&xet; ahol &tex;\displaystyle p&xet; prím, akkor az nem lehet, hogy &tex;\displaystyle A&xet;-ban és &tex;\displaystyle B&xet;-ben is van &tex;\displaystyle p&xet;-vel osztható tag, különben mindkét szorzat osztható &tex;\displaystyle p&xet;-vel, de akkor a különbségük is osztható &tex;\displaystyle p&xet;-vel, de &tex;\displaystyle p>k&xet; miatt ez nem lehet. Legyen most &tex;\displaystyle q&xet; egy prím a &tex;\displaystyle (k,2*k]&xet; intervallumban (Csebisev), és &tex;\displaystyle p&xet; egy tetszőleges prím &tex;\displaystyle (k,\frac {n}{2k}]&xet;-ban, ekkor &tex;\displaystyle p*q\le n&xet;, így q többesei ugyanabban a halmazban vannak, ahol &tex;\displaystyle p&xet; többesei, legyen ez a halmaz, mondjuk &tex;\displaystyle A&xet;. De akkor a &tex;\displaystyle B&xet;-ben szereplő számok szorzata nem lehet olyan nagy. &tex;\displaystyle B&xet;-ben csak &tex;\displaystyle k&xet;-nál nem nagyobb és &tex;\displaystyle \frac{n}{2k}&xet;-nál nagyobb prímosztójú számok lehetnek.

&tex;\displaystyle \prod _{b\in B}b \le \prod_{p\le k}p^{e(n,p)}*\prod_{n\ge p>\frac{n}{2k}}p^{e(n,p)}\le (4^k)^n*{(4^n)}^{2*k}=c(k)^n&xet;, ahol &tex;\displaystyle e(n,p)&xet; a &tex;\displaystyle p&xet; kitevője &tex;\displaystyle n!&xet; prímtényezős felbontásában, használtuk: triviálisan &tex;\displaystyle e(n,p)\le n&xet;, továbbá &tex;\displaystyle n>(2*k)^2&xet; és &tex;\displaystyle p>\frac{n}{2k}&xet; esetén &tex;\displaystyle e(n,p)<2*k&xet; (mert &tex;\displaystyle p^2>n&xet;, így &tex;\displaystyle e(n,p)=[\frac np&xet;]). Továbbá &tex;\displaystyle n&xet;-ig a prímek szorzata legfeljebb &tex;\displaystyle 4^n&xet;.

A becslést és a feladat állítását használva: &tex;\displaystyle n!=\prod _{a\in A}a \prod _{b\in B}b\le (c(k)^n+k)*c(k)^n<d(k)^n&xet;, azaz &tex;\displaystyle n!<d(k)^n&xet;, ahol &tex;\displaystyle d(k)&xet; csak &tex;\displaystyle k&xet;-tól függ. Ez ellentmond &tex;\displaystyle n!\ge (\frac n2)^{\frac n2}&xet;-nek. (korábbi &tex;\displaystyle n>(2*k)^2&xet; feltételt se felejtsük el.)

[993] Sinobi2015-07-29 06:43:23

Az A641-re az nem-e jó megoldás, hogy összekötöm a csúcsokat az élek mentén, veszem a legkisebb zárt görbét. Ez egy egyszerű, véges csúcsú poligon, tehát van beírt négyzete. (Stromquist, wiki). (A többi kiválasztott csúccsal most nem foglalkozom)

Mivel a poligon minden pontja rácsél vagy -pont, azt kell meggondolni, hogy az ilyen típusú négyzetek jók, vagy majdnem jók. Ha a csúcsai A,B,C,D, és aszerint nézzük a négyzeteket hogy milyen irányú éleken fekszenek, akkor, 4 lényegesen különböző eset lehetséges: (x,x,x,x), (x,x,x,y), (x,x,y,y), (x,y,x,y).

A 2., 3. esetből azonnal következik, hogy a négyzet minden csúcsa rácspont, az (x,x,x,x) típusú négyzet elcsúsztatható, az (x,y,x,y) típusú pedig el forgatva nyújtható az élek mentén, hogy egyik csúcsa rácspontba kerüljön, azaz az egyik csúcson az egyik típusú él helyére a másikat írjuk, amit már láttunk.

Valahol elsumákolnék egy/sok esetet?

[992] marcius82015-07-09 00:00:24

Valaki le tudná írni az A585 feladat megoldását? Segítségét előre is köszönöm. BERTALAN ZOLTÁN.

[991] w2015-06-19 16:11:45

IMC 2013/1. nap 4. feladat

Előzmény: [979] csábos, 2015-05-23 16:48:07
[990] sakkmath2015-06-07 01:49:39

A társszerző: Victoria Powers.

Előzmény: [989] sakkmath, 2015-06-07 01:42:16

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]