KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum
Játékszabályok
Technikai info
TeX tanfolyam
Regisztráció
Témák

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Fórum - "ujjgyakorlatok"

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Ön még nem jelentkezett be.
Név:
Jelszó:

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]    [37. oldal]    [38. oldal]  

Ha a témához hozzá kíván szólni, először regisztrálnia kell magát.
[195] lorantfy2004-11-09 08:45:18

Kedves Lajos!

Gratula! Szép a szorzattáalakítás, de a trükköt is megoszthatnád velünk!

Felteszek még egy ábrát az 57. feladathoz hátha valakinek megtetszik!

Előzmény: [194] Lóczi Lajos, 2004-11-09 02:56:16
[194] Lóczi Lajos2004-11-09 02:56:16

Ha "csak úgy bele a közepibe", akkor

\left( 8 - 7x + x^2 \right) 
  \left( 10 - 2 {\sqrt{2}} - 7x + x^2 \right) 
  \left( 10 + 2 {\sqrt{2}} - 7x + x^2 \right).

Gyártottam még néhány feladatot erre a kaptafára, ezek kivétel nélkül másodfokúak szorzatára bonthatók:

(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)+n=0, ahol n\in{...,-189,-96,-35,-5,9,15,16,21,64,135,...}.

Persze a tényezők számának és az 1,2,3,4,5,6 számoknak semmi szerepük sincs, pl. (x+1)(x-2)(x+5)(x+4)(x+2)+160=0 egy másodfokú és egy harmadfokú szorzatára bomlik... stb. stb. stb.

Előzmény: [193] Gubbubu, 2004-11-08 19:37:04
[193] Gubbubu2004-11-08 19:37:04

58. feladat (ezt én Mosóczi András egyetemi hallgatótól ismerem)

Oldjuk meg az alábbi egyenletet:

(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)+16=0

Nem kell megijedni ettől a jó kis hatodfokú egyenlettől. Ügyesen kell szorozgatni és alakítgatni, nem csak úgy bele a közepibe... :-))

[192] lorantfy2004-11-07 20:00:53

57.feladat: Egy négyzet belsejében úgy vettünk fel két pontot, hogy az ezeket a négyzet négy csúcsával összekötő szakaszok a négyzetet kilenc, közös belső pont nélküli sokszögre darabolják.

Lehet-e a kilenc sokszög területe ugyanakkora?

(Varga Tamás verseny 1998.)

[191] Gubbubu2004-10-08 09:48:03

56. feladat: Igazoljuk, hogy tetszőleges háromszögben a szokásos jelölésekkel

 \frac{1}{ m_{a}+m_{b}+m_{c} } \le \frac{K^{2}}{16} \cdot \left(  \frac{1}{a}+ \frac{1}{b} +\frac{1}{c} \right)

!

Hálás lennék, ha valaki felvilágosítana, mennyire "jó" ez a becslés, van-e jobb esetleg.

[190] Suhanc2004-09-22 20:12:54

Ja, ez lemaradt: a;b;c\ge0

[189] Suhanc2004-09-22 20:12:09

Elmúlt szakkörön vettük, és egy általános tétel jött ki belőle:

55.Feladat:

Igazoljuk az alábbi egyenlőtlenséget:

a3b+b3c+c3a\gea2bc+ab2c+abc2

[188] Suhanc2004-09-22 20:04:08

Mivel senki sem írt, beírom... Az első törtet {\sqrt 2}-vel bővítve a másodikat kapjuk...

Előzmény: [187] Hajba Károly, 2004-09-14 15:02:23
[187] Hajba Károly2004-09-14 15:02:23

54. feladat: Melyik a nagyobb szám, az A=\frac{\sqrt{2}-1}{\sqrt{2}+1} vagy a B=\frac{2-\sqrt{2}}{2+\sqrt{2}}?

HK

[186] V. Dávid2004-09-04 09:34:31

Az 53-as megoldása:

x^6-7x^2+\sqrt6=(x^2-\sqrt6)(x^4+\sqrt6x^2-1)=0

Előzmény: [185] lorantfy, 2004-09-04 09:22:33
[185] lorantfy2004-09-04 09:22:33

53. feladat: Oldjuk meg a valós számok halmazán az egyenletet:

x^6-7x^2+\sqrt6 = 0

('96-os OKTV feladat. Mondjuk alakítsuk szorzattá!)

[184] lorantfy2004-08-17 18:24:31

52. feladat megoldása: x4-15x2-18x kifejezés minimumát kell meghatározni elemi módszerekkel.

Jó lenne átalakítani két teljes négyzet összegére, mégpedig úgy, hogy mindkettő ugyanazon x értéknél adjon nullát. A konstans nem számít, majd a végén levonjuk!

x4-15x2-18x=(x2-a2)2+b(x-a)2+c

Elvégezve a műveleteket és az azonos kitevőjű tagok együtthatóit összehasonlítva a köv. egyenletrendszert kapjuk:

2a2-b=15

ab=9

c=-a4-ba2

Az első kettőből 2a3-15a-9=0, látszik, hogy a=3 gyöke, így szorzattá alakítjuk:

(a-3)(2a2+6a+3)=0, a másodfokú gyökei a=\frac{-3 \pm \sqrt3}{2} ez mindkettő negatív, 3-nál kisebb absz. értékű és b értéke is negatív.

Emiatt a c=-a4-ba2 értéke a=3-nál a legkisebb: b=3 és c=-108.

Tehát a konkrét átalakítás:

x4-15x2-18x=(x2-9)2+3(x-3)2-108

A kifejezés minimuma x=3-nál -108.

Előzmény: [181] Suhanc, 2004-08-15 12:51:21
[183] ScarMan2004-08-16 20:14:31

Kedves László!

Mostmár látom, hogy félreértettem a feladatot. Azt hittem, hogy csak azokat a római számokat kell egybeolvasni, amik egymás mellett vannak... hát igen, így már teljesen más a feladat. Bocs az értetlenkedésemért!

Előzmény: [173] lorantfy, 2004-08-15 00:37:02
[182] Hajba Károly2004-08-15 14:09:48

Kedves Suhanc!

Gratula, egyébként szerintem nincs más megoldás. Ezzel a feladattal még nem mentem a Szabadalmi Hivatalba, így teljes nyugalommal feladhatod. :o)

Hasonló feladatot - arab számokkal - felraktam az "Érdekes matekfeladatok" topikba is [325](74.), ott csak az egyik megoldást találta meg SchZol. Azzal a feladattal már nagyon régen találkoztam először, a római számos változatát most kreáltam, persze ez nem jeleti azt, hogy feltaláltam a spanyolviaszt.

HK

Előzmény: [180] Suhanc, 2004-08-15 12:40:34
[181] Suhanc2004-08-15 12:51:21

Kedves Mindenki!

Ezzel a feladattal tegnapelőtt találkoztam... egy régi Arany Dani példa... lehet, hogy elsőre kissé favágónak tűnik:

52.FeladatHatározzuk meg az x4-15x2-18x kifejezés legkisebb értékét, ha x valós szám!

[180] Suhanc2004-08-15 12:40:34

Kedves Károly!

Ötletes feladat!:)

Egy lehetséges megoldás: IX;I;II;I;I;I;I

Ha megengeded, majd szeptemberben elkérem...:) Matekórán szoktunk feldobni ilyeneket...

Előzmény: [179] Hajba Károly, 2004-08-15 12:00:03
[179] Hajba Károly2004-08-15 12:00:03
Ebben a táblázatban
... db I számjegy
... db V számjegy
... db X számjegy
... db L számjegy
... db C számjegy
... db D számjegy
... db M számjegy
található

Hamár a római számoknál tartunk íme az 51. feladat. Természetesen római számjegyekkel kell kitölteni. :o)

HK

[178] Hajba Károly2004-08-15 11:31:20

Kedves László!

Először nekem sem eset le a tantusz, már kezdtem fogalmazni a véd és vádiratot melletted, mikor belémcsapott az isteni szikra. :o)

HK

Előzmény: [177] lorantfy, 2004-08-15 10:35:37
[177] lorantfy2004-08-15 10:35:37

Kedves Suhanc és Károly!

Bocs az alaptalan feltételezésért! Jó a példa, én voltam figyelmetlen!

Károly szépen lecsaptad a magas labdát. Gratula!

Előzmény: [176] Suhanc, 2004-08-15 10:06:07
[176] Suhanc2004-08-15 10:06:07

Kedves Károly!

Igen, erre gondoltam...:)

Köszönöm a megoldást!:)

Előzmény: [175] Hajba Károly, 2004-08-15 09:30:55
[175] Hajba Károly2004-08-15 09:30:55

Kedves Suhanc!

A római IX megfordítva XI, így a három történelmi könyv X(XI)V, számértéke 10+9+5=24.

HK

Előzmény: [174] Suhanc, 2004-08-15 07:24:05
[174] Suhanc2004-08-15 07:24:05

Kedves László!

Átnéztem a feladatomat, és találtam rá egy lehetséges megoldást az eredeti szöveggel...

A [173]-as hozzászólásodban a levezetéssel egyetértek, kivéve, hogy :

"Balról jobbra olvasva az 1 és 10 közötti római számokból hármat nem lehet összerakni úgy, hogy értelmes római szám keletkezzen."

De lehet...:)

Ami talán nincs kellően kihangsúlyozva, hogy a könyveknek a közepén vannak a számok...

Előzmény: [173] lorantfy, 2004-08-15 00:37:02
[173] lorantfy2004-08-15 00:37:02

Szia ScarMan!

Ha a történelmi könyvek a III, IV, V a 7-es meg nincs a polcon, akkor a megmaradó arab számok: 1+2+6+8+9+10=36.

Hogy lehet a III, IV, V számokból balról jobbra olvasva a 36-os számot kihozni?

Azt hiszem kicsit javítani kell a feladat szövegén!

A számok összege 1-től 10-ig 55. Ebből elvesszük a 7-et, marad 48, ennek a fele 24.

Balról jobbra olvasva az 1 és 10 közötti római számokból hármat nem lehet összerakni úgy, hogy értelmes római szám keletkezzen.

A maximum két számból XIX lenne, akkor a VII-es lehetne a harmadik történelmi, de a megmaradó arabok összege 29.

Így egyetlen kiutat látok, hogy Suhanc elírta a feladat szövegét!

Szerintem a javított szöveg:

A történelmi témájú könyvek egymás mellett vannak, számaikat jobbról balra egybeolvasva pontosan annyit kapunk, mint a mellettük levő arab számok összege.

Ekkor van megoldás: V, IX, X. Egybeírva: VIXX. Jobbról balra olvasva 24.

Jól gondolom?

Előzmény: [172] ScarMan, 2004-08-14 22:06:18
[172] ScarMan2004-08-14 22:06:18

50. feladat: III, IV, V

Előzmény: [171] Suhanc, 2004-08-09 20:49:02
[171] Suhanc2004-08-09 20:49:02

Ezt a feladatot 2 éve "barkácsoltam", remélem, azért az ujjgyakorlat minősítést megérdemli...:) Eredetileg a logikába szerettem volna írni, de ide talán jobban illik:

50.Feladat

Robi rendbe rakja könyvespolcát. Könyveit sorba rakja, és a könyvek gerincének a közepén számokat ír rá 1-től 10-ig.. Három könyve történelmi témájú, ezért ezekre a számot római számmal írja, majd fogja a hetes számot viselő könyvet, és elmegy otthonról. Hazaérve rémülten látja, hogy az öccse összekeverte könyveit. A történelmi témájú könyvek egymás mellett vannak, számaikat balról jobbra egybeolvasva pontosan annyit kapunk, mint a mellettük levő arab számok összege. Milyen számok vannak a történelmi könyveken?

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]    [37. oldal]    [38. oldal]  

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program  
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley