KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum
Játékszabályok
Technikai info
TeX tanfolyam
Regisztráció
Témák

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Fórum - "ujjgyakorlatok"

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Ön még nem jelentkezett be.
Név:
Jelszó:

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]    [37. oldal]    [38. oldal]  

Ha a témához hozzá kíván szólni, először regisztrálnia kell magát.
[470] Róbert Gida2005-11-18 00:47:56

94. feladat

Egy nxn-es mátrixot nevezzünk k-büvős négyzetnek, ha elemei pontosan az 1,2,3,...,n2 számok továbbá teljesül minden 1\leqd\leqk-ra, hogy minden sorban, minden oszlopban és a két átlóban az elemek d-edik hatványösszege ugyanaz. Bizonyítsuk be ,hogy (4p+2)x(4p+2)-es k-büvős négyzet nem létezik, ha k\geq3 ( itt p egész ).

[469] Lóczi Lajos2005-11-17 22:26:32

Köszönöm az érdekes fejleményeket az ügyben (és hogy vetted a fáradságot bepötyögni a mátrixokat :)

(Én kb. 2000-ben foglalkoztam ezzel a kérdéssel (lám, azóta sokminden felkerült az internetre...) és emlékszem, többszáz CPU-órát használtam fel. A 40800 ezek szerint a 4x4-es maximum, én is azt sejtettem, most már beugrott a szám. Láttam, hogy a 7x7-es eset alsó becslésével Pfoertner több, mint 2 évet számolt :-) )

A legérdekesebb, hogy ezek szerint nem mindig akkor adódik a maximális determináns, ha a főátlóban vannak a legnagyobb elemek.

Előzmény: [467] Róbert Gida, 2005-11-17 21:10:06
[468] Róbert Gida2005-11-17 21:17:16

93. feladat

Egy nxn-es komplex elemű mátrix determinánsának kifejtésénél azt a meglepő dolgot tapasztaltuk, hogy mind az n! tag valós része pozitív. Milyen n-re lehetséges ez?

[467] Róbert Gida2005-11-17 21:10:06

Legyen x(n) a maximális determináns az nxn-es mátrixok közt, melynek elemei pontosan az 1,2,..,n2 számok. Triviálisan x(1)=1 és x(2)=10 ( főátlóban 4 és 3 ). Megoldásom szerint x(3)=412 Ekkor Sloane adatbázisában az 1,10,412 sorozatra rákeresve egyetlen találatot ad, a miénket! Ez az A085000 sorozat: http://www.research.att.com/projects/OEIS?Anum=A085000 Még állítólag 3 tag ismert a sorozatból!

x(4)=40800, mátrixot nem ad meg hozzá.

x(5)=6839492 mátrixot is ad hozzá:

A=\left(\matrix {25&15&9& 11 &4\cr 7& 24& 14& 3& 17 \cr 6& 12& 23& 20& 5\cr 10& 13& 2& 22& 19\cr 16& 1&18& 8& 21 \cr}\right)

x(6)=1865999570 ehhez is ad mátrixot:

B=\left(\matrix {36& 24& 21& 17& 5& 8\cr 3& 35& 25& 15& 23& 11\cr 13& 7& 34& 16& 10& 31\cr 14& 22& 2& 33& 12& 28 \cr 20& 4& 19& 29& 32& 6\cr 26& 18& 9& 1& 30& 27\cr}\right)

Alsó becslések ( Hugo Pfoertner ): x(7)\geq762140212575 és x(8)\geq440857916120379, x(7)-re ez már jobb becslés, mint amit Sloane-nál találhatunk, ez a http://www.recmath.org-on található. Itt éppen a te problémád egy javasolt programozási versenyfeladat, hogy minnél jobb becslést találjunk x(n) sorozatra. Nagyon kevés nyílt programozási verseny van a weben, jó ha 2. Ezek közül az egyik a híres Al Zimmermann prog. verseny: évente van 3-4 feladat és nagyon nagy dolognak számít ezen nyerni. Jelenleg is tart egy verseny: cél az 1,2,3,...,n sugarú körök bepakolása egy minimális sugarú körbe, hogy a körök diszjunktak legyenek. Ez a feladat 5\leqn\leq50-re.

Előzmény: [464] Lóczi Lajos, 2005-11-17 19:10:22
[466] Káli gúla2005-11-17 20:21:54

Igazad van, bár csupa negatív tagnál felcserélhetnénk két sort, és akkor csupa pozitív tagot kapnánk.

Egy újj gyakorlat. 92. feladat. A két és háromdimenziós kockának van egy érdekes tulajdonsága: ha a csúcsokat valahogy két azonos elemszámú részre bontjuk (elfelezzük), akkor a két ponthalmaz egybevágó lesz. Megvan-e ez a tulajdonsága a négydimenziós kockának is?

Előzmény: [462] Róbert Gida, 2005-11-17 18:24:53
[465] Róbert Gida2005-11-17 19:15:26

Megoldás a 90. feladatra:

Ha A egy nxn-es mátrix, melynek minden eleme +-1, akkor a mátrix determinánsa osztható 2n-1-gyel. Ez n=1-re trivi, indukcióval, ha n=k-ra igaz, akkor n=k+1-re is igaz. Induljunk a csupa 1 mátrixból, ennek sorai összefüggnek, így determinánsa nulla, egy-egy lépésben a mátrix egy elemét -1-re változtatva bármely mátrixot megkaphatunk. Egy lépésben a mátrix determinánsát kifejtve abban a sorban, ahol egy elemet megváltoztattunk: az eredeti determináns+-2*aldetermináns lesz az új determináns, de az aldetermináns az indukció miatt osztható 2k-2-vel, így a determináns 2k-1-gyel osztható marad. Ami kellett.

Ha n>1 akkor a 0 mindig lehet a determináns: legyen A csupa 1 mátrix. Elég pozitív determinánsokat előállítani, mivel a determináns előjelet vált, ha két oszlopát felcseréljük.

n=3-ra a determináns legfeljebb 6, mivel 6 darab kifejtési tag van. De a determináns osztható 4-gyel. Így csak -4,0,4 lehet, ezek közül mindegyik előáll, az előbbiek miatt elég 4-re előállítást mutatni: legyen

A=\left(\matrix{-1&1&1\cr  1&-1&1\cr 1&1&-1\cr}\right)

n=4-re 24 darab kifejtési tag van és a determináns osztható 8-cal, így csak -16,-8,0,8,16 lehet és mindegyik előáll, elég -8-ra és -16-ra példát mutatni: legyen

B=\left(\matrix{ -1&1&1&1\cr 1&-1&1&1 \cr 1&1&-1&1 \cr 1&1&1&-1 \cr}\right)

. Ekkor det(B)=-16 . Legyen

C=\left(\matrix{-1&-1&1&1 \cr 1&-1&1&1 \cr 1&1&-1&1 \cr 1&1&1&-1\cr}\right)

Ekkor det(C)=-8

[464] Lóczi Lajos2005-11-17 19:10:22

Régebben a 4x4-es analóg esetet is végigszámoltam, azzal a feltevéssel, hogy a főátlóban állnak a maximális elemek (tehát 16, 15, 14, 13). Aztán ha jól emlékszem valaki végigszámolta mindet és meghatároztuk a maximális elrendezést. Sajnos, nem látszott az általános minta. Milyen jó lenne látni pl. az 5x5-ös, stb. eseteket is... (tehát a mátrixot 1,2, ... , n2 számokkal feltöltve)

Aki ehhez hasonló problémákat akar keresgetni az interneten, az a Hadamard-féle maximális determinánsproblémára keressen pl. rá. Számos speciális alakú mátrix esetén ismert a maximum, de nem találtam eddig sehol eredményeket a fent feltett kérdésemre. Persze általánosabban is vizsgálható lenne a kérdés. Pl. egy ujjgyakorlat a következő:

Adott 4 valós szám. Mely elrendezés mellett lesz a belőlük képzett 2x2-es determináns abszolút értéke maximális?

Előzmény: [463] Róbert Gida, 2005-11-17 18:41:47
[463] Róbert Gida2005-11-17 18:41:47

Megoldás a 89. feladatra:

A minimum egyszerű, legyen ugyanis:

A=\left(\matrix {1&2&3 \cr 4&5&6 \cr 7&8&9 \cr } \right)

Ekkor A sorai lineárisan összefüggnek, így determinánsa nulla, így a minimum is nulla. A maximumra egy egyszerű program segítségével mind a 9! esetet végignézve ( persze lehetne kevesebbel is ), kapjuk, hogy a maximum 412 és ezt pl.

B=\left(\matrix {9&4&2 \cr 3&8&6 \cr 5&1&7 \cr}\right)

mátrixon vétetik fel. Egyébként nem véletlenül 412-öt is felveszi, mert ha -412 állna elő, akkor 2 oszlopát felcserélve a determináns ellentettjére vált.

[462] Róbert Gida2005-11-17 18:24:53

Valójában az indukció miatt az is kell, hogy pozítiv tag is van a kifejtési tagok közt. Amit persze ugyanúgy beláthatsz.

Megoldásom: n=3-ra szorozzuk össze a kifejtési tagokat, ekkor mivel a mátrix minden eleme két permutációban szerepel és a 6 féle permutáció közt 3 páros és 3 páratlan, ezért szorzatuk páratlan, így a kifejtési tagok szorzata - \prod _{i,j}{a_{i,j}}^2<0, de akkor a kifejtési tagok közt van pozitív és negatív is, ami kellett.

Előzmény: [456] Káli gúla, 2005-11-16 23:29:23
[461] Lóczi Lajos2005-11-17 14:13:01

Igen, ezért (is) érdekes az 1/2 !

(Csak az elütést teszem szóvá: 1+1/x-et gondoltál írni f definíciójában. - Javítottam - Sirpi)

Előzmény: [460] Ali, 2005-11-17 12:10:35
[460] Ali2005-11-17 12:10:35

f(x)=\left(1+\frac{1}{x}\right)^{x+\alpha}

f'(x)=\left(ln(1+\frac{1}{x})-\frac{\alpha}{x}-\frac{1-\alpha}{x+1}\right)\left(1+\frac{1}{x}\right)^{x+\alpha}

Jelölje g(x)=ln(1+\frac{1}{x})-\frac{\alpha}{x}-\frac{1-\alpha}{x+1}

g'(x)=\frac{\alpha}{x^{2}}+\frac{1-\alpha}{(x+1)^{2}}-\frac{1}{x(x+1)}=\frac{1}{x^{2}(x+1)^{2}}\left(\frac{1}{2}-(\frac{1}{2}-\alpha)(2x+1)\right)

További részletezés nélkül ebből már látszik, hogy miért is olyan érdekes az 1/2 :-)

Előzmény: [442] Ali, 2005-11-14 16:00:17
[459] Lóczi Lajos2005-11-16 23:53:33

90. feladat. Milyen értéket vehet fel egy 3x3-as mátrix determinánsa, ha minden mátrixelem (+1) vagy (-1)?

91. feladat. Mi a helyzet 4x4-es mátrix esetén?

[458] Lóczi Lajos2005-11-16 23:45:56

89. feladat. Mennyi lehet egy 3x3-as mátrix determinánsa abszolút értékének

a.) maximuma

b.) minimuma,

ha a mátrix elemei az 1, 2, 3,..., 9 számok (mindegyik pontosan egyszer)? Adjunk meg egy-egy extremális determinánsú elrendezést.

[457] Lóczi Lajos2005-11-16 23:39:47

88. feladat. Milyen \alpha\in[0,1] esetén lesz a [-1,1] intervallum komplementerén értelmezett x\mapsto \left(1+\frac{1}{x}\right)^{x+\alpha} függvény grafikonjának tükörszimmetriája?

[456] Káli gúla2005-11-16 23:29:23

Ha mínuszból páratlan sok van, akkor valamelyik pozitív együtthatós hármasban is páratlan sok mínusz van. Ha mínuszból páros sok van, akkor valamelyik negatív együtthatós hármasban is páros sok van.

Előzmény: [455] Róbert Gida, 2005-11-16 22:51:06
[455] Róbert Gida2005-11-16 22:51:06

Jó megoldás, először én is így csináltam n>3-ra, és n=3-ra végignéztem számítógéppel az 512 esetet, ez persze nem sok egy mai számítógéppel, kevesebb mint 1 másodperc alatt lefut. Aztán észrevettem egy számolás mentes bizonyítást n=3-ra! Mi lenne az?

Előzmény: [454] Lóczi Lajos, 2005-11-16 22:36:09
[454] Lóczi Lajos2005-11-16 22:36:09

Mivel csak az előjel számít, feltehető, hogy minden elem a mátrixban +1 vagy -1.

n=2-re lehet minden kifejtési tag pozitív, pl. a bal alsó sarokban -1, a többi +1.

n=3-ra összesen 29-féle \pm1 mátrix van, ezeket szisztematikusan végigvizsgálva 32-féle különböző "kifejtési tag 6-os" adódik, ám mindegyik tartalmaz legalább egy (-1)-est, ÉS +1-est, tehát a kívánt tulajdonságú 3x3-as mátrix már nincs.

És nincs n>3 esetén sem, mert -- pl. első sor szerint kifejtve -- a kifejtési tétel szerint ezt az nxn-es determinánst felírhatjuk n db (n-1)x(n-1)-es determináns előjeles összegeként, de akármelyik ilyen eggyel kisebb determináns kifejtésében lesz előjelváltás, tehát az eredeti nxn-es mátrix első sorát akárhogyan is választjuk meg \pm1-ek közül, az n db (n-1)! tagból álló kupac mindegyikében lesz előjelváltás.

Előzmény: [450] Róbert Gida, 2005-11-16 19:42:03
[453] ágica2005-11-16 21:23:45

Az \root{n}\of{n} sorozat a 3. tagtól kezdve monoton csökkenően konvergál 1-hez, előtte viszont monoton nő, tehát a legnagyobb tagja \root3\of{3}\approx{1,442}.

Előzmény: [449] Lóczi Lajos, 2005-11-16 12:12:26
[452] Lóczi Lajos2005-11-16 20:39:28

Ja, nyilván a második lehetőségre gondoltál.

Előzmény: [451] Lóczi Lajos, 2005-11-16 20:37:51
[451] Lóczi Lajos2005-11-16 20:37:51

Hogy értve pozitív?

Pl. 2x2-esnél: (ad-bc)-ben "ad" és "bc" is pozitív számok, vagy "ad" és "-bc" pozitívak?

Előzmény: [450] Róbert Gida, 2005-11-16 19:42:03
[450] Róbert Gida2005-11-16 19:42:03

87. feladat Egy nxn-es mátrix determinánsának a kifejtésénél azt a meglepő dolgot tapasztaltuk, hogy mind az n! darab tag pozítiv, milyen n-re lehetségez ez?

[449] Lóczi Lajos2005-11-16 12:12:26

86. feladat. Legyen n pozitív egész. Az \root n \of{n} alakú számok között melyik a legnagyobb?

[448] Lóczi Lajos2005-11-16 10:48:32

Az 5 az több, mint a "pár", tehát tényleg komolyabb az eszköz :)

(Leibniz nevében inkább ne legyen "t" betű.)

Előzmény: [447] Róbert Gida, 2005-11-16 00:58:20
[447] Róbert Gida2005-11-16 00:58:20

Azért nem kellenek komoly eszközök ehhez.

Tovább számolva: legyen n>1 ekkor

{\bigg(1-\frac 1{n^2}\bigg)}^{2n}\leq 1-\binom {2n}{1}\frac 1{n^2}+\binom {2n}{2}\frac 1{n^4}-\binom{2n}{3}\frac 1{n^6}+\binom{2n}{4}\frac 1{n^8}=1-\frac {2}{n}+\frac {2}{n^2}-\frac {7}{3n^3}+\frac {8}{3n^4}-\frac {8}{3n^5}+\frac {11}{6n^6}-\frac {1}{2n^7}

teljesül, hiszen könnyen bizonyíthatóan Leibnitz sor a binomiális sor részletösszegeinek sorozata, így most az első 5 tag egy felső becslést ad. Az egyenlőtlenség jobb oldalára pedig alsó becslést adva: \frac {n-1}{n+1}=1-\frac {2}{n+1}\geq 1-\frac {2}{n}+\frac {2}{n^2}-\frac {2}{n^3}+\frac {2}{n^4}-\frac {2}{n^5}+\frac {2}{n^6}-\frac {2}{n^7}, ( ha nagy n-re akarnám belátni akkor elég lenne 4 tagot venni ) azaz elég belátni:

1-\frac {2}{n}+\frac {2}{n^2}-\frac {7}{3n^3}+\frac {8}{3n^4}-\frac {8}{3n^5}+\frac {11}{6n^6}-\frac {1}{2n^7}<1-\frac {2}{n}+\frac {2}{n^2}-\frac {2}{n^3}+\frac {2}{n^4}-\frac {2}{n^5}+\frac {2}{n^6}-\frac {2}{n^7}

Rendezve és 6n7-tel szorozva kell: 2n4-4n3+4n2+n-9>0 kell, ami n>1-re triviálisan teljesül. Így beláttuk a feladatot.

Kétségtelen kicsit számolós, de ezt szerencsére a Maple végezte el.

Előzmény: [446] Lóczi Lajos, 2005-11-15 21:53:28
[446] Lóczi Lajos2005-11-15 21:53:28

Azért szerintem ide kicsit komolyabb eszközök kellenek, mint az első pár tag. Egy standard módszer: (n-nek semmi jelentősége, hogy egész, ezért x-et írva)

vegyünk logaritmust és rendezgessünk egy kicsit, elegendő belátni, hogy x>1 esetén


f(x):=-2x\log (1 - x^{-2}) + \log (1 - \frac{2}{1 + x})>0.

Könnyen látható, hogy f limesze 1-ben jobbról +\infty, a végtelenben pedig 0. Továbbá


f''(x)=\frac{4}{x{\left( -1 + x^2 \right) }^2}>0,

tehát f konvex. Ezek miatt f pozitív és az egyenlőtlenséget beláttuk.

Előzmény: [444] Ali, 2005-11-15 14:40:53

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]    [37. oldal]    [38. oldal]  

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley