KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum
Játékszabályok
Technikai info
TeX tanfolyam
Regisztráció
Témák

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Fórum - Nehezebb matematikai problémák

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Ön még nem jelentkezett be.
Név:
Jelszó:

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]  

Ha a témához hozzá kíván szólni, először regisztrálnia kell magát.
[510] jenei.attila2007-02-22 17:16:12

Sajnos ugyanazt a hibát követed el, mint sakkmath. Bebizonyítottad, hogy a baloldal \le \frac{8}{27}-4xyz. Ebből azonban akkor következne az eredeti állítás, ha frac127\lexyz lenne, ami éppen fordítva áll fenn. Mindkettőtöknél az a hiba, hogy egy egyenlőtelnségben (ahol a baloldal <= mint a jobboldal), nem biztos, hogy akkor lesz a baloldal maximális, ha a jobboldal minimális (mégha ilyenkor egyenlők is).

Előzmény: [509] szbela, 2007-02-22 16:54:46
[509] szbela2007-02-22 16:54:46

sziasztok! nekem is hasonló megoldásom lenne, íme: írjuk fel a baloldalt a következőképp: (x+y)(x+z)(y+z)-(y2x+x2z+z2y+xyz) innen a geometriai és a számtani közép között fennálló összefüggésből megtudjuk határozni (x+y)(x+z)(y+z) maximumát, ami (2/3)3, azaz 8/27. Ez x=y=z esetében áll fenn. Most határozzuk meg y2x+x2z+z2y+xyz kifejezés minimumát a számtani közép és a geometriai közép segítségével, ami 4xyz, és akkor áll fenn, ha x=y=z. És ehhez kell, hogy meghatározzuk xyz maximumát, amit szintén a már sokszor használt számtani és mértani középpel tudunk megtenni. így 4xyz értéke (1/3)3*4, azaz 4/27. Kifejezésünk maximuma tehát nem más, mint 8/27-4/27, azaz 4/27, ami az előzőekből következve x=y=z=1/3 esetben áll fenn. Utólagos elnézést a sok szöveghez, most először használtam a TeX-et.

[508] jenei.attila2007-02-22 16:42:45

Sőt! Sajnos nem jó a bizonyításod, mert amit én írtam egyenlőtlenséget, az éppen fordítva áll fenn. Tehát hiába bizonyítottad, hogy a baloldal \le x^3+y^3+z^3+\frac{1}{27}, ebből nem következik az eredeti állítás.

Előzmény: [507] jenei.attila, 2007-02-22 16:29:52
[507] jenei.attila2007-02-22 16:29:52

Szerintem még annyi hiányzik, hogy x^3+y^3+z^3\le\frac{3}{27}, ha x+y+z=1. Különben jó.

Előzmény: [506] sakkmath, 2007-02-22 14:44:09
[506] sakkmath2007-02-22 14:44:09

A megoldásom:

Előzmény: [499] Sümegi Károly, 2007-02-19 14:35:14
[505] Sümegi Károly2007-02-21 18:00:44

Köszönöm a megoldást, a módszert ismertem. Nem tudom van-e elemibb megoldása. A feladat nehézségét az adja, hogy a megszokott egyenlőtlenségekkel nehezen bizonyítható, mert több helyen is felveszi a szélsőértékét. Egy hétig próbálkoztam vele, de nem sikerült. Ha valaki megoldaná deriválás nélkül, az érdekelne. A feladat felsőbb matematikával történő megoldása eléggé jól működik.

Előzmény: [504] Lóczi Lajos, 2007-02-20 14:28:40
[504] Lóczi Lajos2007-02-20 14:28:40

Aki szereti az ilyen tipusu feladatokat, azoknak ajanlom figyelmebe a www.artofproblemsolving.com oldal forumanak tanulmanyozasat: naponta tobb tucat ilyen feladatot tuznek ki.

A mostani feladat megintcsak nem lesz nehez, ha tudunk derivalni. Legyen f(x,y) az egyenlotlenseg bal oldala a z=1-x-y helyettesites utan. Megmutatjuk, hogy f abszolut maximuma 4/27 az x=0, y=0, x+y=1 egyenesek altal hatarolt haromszoglapon, amibol a feladat mar kovetkezik.

A parcialis derivaltakat 0-val egyenlove teve a haromszog belsejeben 4 lehetseges szelsoertekhely adodik: (1/3,1/3), illetve egy harmadfoku egyenlet harom gyokenel, amit most nem masolok ide. Itt f(1/3,1/3)=4/27, a maradek harom pontban pedig f erteke 1/7, ami kisebb 4/27-nel.

Hatra van a perem vizsgalata. Kulon nezve az f(0,y), f(x,0) es f(x,1-x) egyvaltozos fuggvenyeket megallapitjuk, hogy ezek legfeljebb 4/27-et vesznek fel, megpedig csak az alabbi helyeken: (0,2/3), (1/3,0), (2/3,1/3), amivel befejezodik az erveles.

Előzmény: [499] Sümegi Károly, 2007-02-19 14:35:14
[503] nadorp2007-02-20 08:44:55

Egy előjelet elnéztél, mert \int_t^1\frac1ydy=-\log{t}. Hasonlóan jön ki az általam kapott eredmény is. A Tiedet folytatva. Legyen

g(p)=-\int_0^1t^{p-1}(1-t)^ndt. Ismert, hogy ez az integrál a Béta függvény ( de kijön n darab parciális integrálás után is), azaz g(p)=-\frac{\Gamma(p)\Gamma(n+1)}{\Gamma(n+p+1)}=-\frac{n!}{\prod_{k=0}^n(p+k)}. Másrészt az integrált a p paraméter szerint deriválva ( ezt most szabad) g^{'}(p)=)=-\int_0^1t^{p-1}(1-t)^n\log{t}dt. Tehát

-\int_0^1t^{p-1}(1-t)^n\log{t}dt=\frac{n!}{\prod_{k=0}^n(p+k)}\sum_{k=0}^n\frac1{p+k}

Előzmény: [502] jonas, 2007-02-19 20:37:00
[502] jonas2007-02-19 20:37:00

Én így kezdeném el:

Vezessük be az f(t)=tp-1(1-t)n jelölést. Ezzel az integrált így írhatjuk.

 \int_0^1 \int_0^1 f(t) dxdy = \int_0^1 \int_0^y f(t)/y dtdy =

 = \int_0^1 \int_t^1 f(t)/y dydt = \int_0^1 f(t) \int_t^1 1/y dy dt = \int_0^1 f(t) \log t dt =

 = \int_0^1 t^{p-1}(1-t)^n\log t dt

(Ha p\ge1, akkor esetleg lehetnek gondok az integrál felcserélésével.)

Innen viszont nem tudom, hogy mennék tovább.

Előzmény: [496] Cckek, 2007-02-18 19:29:46
[501] nadorp2007-02-19 14:53:22

... és a kígyó a saját farkába harap -:). Olyan "nagyon szép" alakot szerintem azért ne nagyon várjál, mert az integrálban a Gamma-függvény van elrejtve.

Előzmény: [500] Cckek, 2007-02-19 14:43:27
[500] Cckek2007-02-19 14:43:27

Pontosan ennek az összegnek a kiszámításához kellett volna ez az integrál:))

Előzmény: [497] Lóczi Lajos, 2007-02-19 11:10:01
[499] Sümegi Károly2007-02-19 14:35:14

Van egy nehéz feladatom:

x,y,z nemnegatív számokra x+y+z=1.

Bizonyítsuk be, hogy x^2y+y^2z+z^2x+xyz\le\frac{4}{27}

[498] nadorp2007-02-19 11:26:09

Így van, nekem is ez jött ki a binomiális tételből. De találtam egy "szebb" ( bár ez hozzáállás kérdése -:) alakot. Tehát

\sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(p+k)^2}=-n!\left[\frac1{p(p+1)(p+2)...(p+n)}\right]^' ( természetesen p-szerinti deriváltról van szó)

Előzmény: [497] Lóczi Lajos, 2007-02-19 11:10:01
[497] Lóczi Lajos2007-02-19 11:10:01

A szamitogep ezt mondta: ha p>0 es n pozitiv egesz, akkor

\int_0^1 \int_0^1 (x y)^{p-1} (1-x y)^n dx dy =

\sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(p+k)^2}.

Előzmény: [496] Cckek, 2007-02-18 19:29:46
[496] Cckek2007-02-18 19:29:46

A következő integrált kéne kiszámítani:

\int_{0}^{1}\int_{0}^{1}{(xy)^{p-1}(1-xy)^{n}}dxdy, ahol p\inR,n\inN

[495] Cckek2007-02-09 16:53:05

Akkor legyen f olyan bijektiv függvény amelyiknek ki tudjuk számítani az inverzét.

Előzmény: [492] Cckek, 2007-02-07 10:22:42
[494] jonas2007-02-07 13:19:55

Miféle trigonometrikus függvényre gondolsz?

Ha mondjuk f(x)=sin x, akkor  \sqrt{(f(x))^2 + (f'(x))^2} ={}  \sqrt {\sin^2 x + \cos^2 x} = 1 .

Előzmény: [492] Cckek, 2007-02-07 10:22:42
[493] Lóczi Lajos2007-02-07 12:26:39

Amit ki lehet egyáltalán számolni, arra nézve lásd http://integrals.wolfram.com/

(Gyakran segít, ha paraméterek helyett konkrét számokkal dolgozol -- a paramétereket komplex számokként kezeli alaphelyzetben, melyek néha bonyolult esetszétválasztásokat eredményeznek.)

Előzmény: [492] Cckek, 2007-02-07 10:22:42
[492] Cckek2007-02-07 10:22:42

A következő tipusú integrálokat kéne kiszámítani:

\int{\frac{af(x)+b}{cf(x)+d}\sqrt{(f(x))^2+(f'(x))^2}}dx.

Ahol f(x) valamilyen trigonometrikus függvény a,b,c,d valós számok.

[491] Gyöngyő2007-01-29 18:08:31

Sziasztok!

Tudnátok segíteni az A.414 feladat megoldásában,mert elrontottam a végégt de nem tudom kijavítani.

Üdv.: Zsolt

[490] nadorp2007-01-29 15:45:27

Bocs,a végeredmény pontatlan: akkor =1, n páratlan sok prím szorzata.

Előzmény: [489] nadorp, 2007-01-29 14:38:59
[489] nadorp2007-01-29 14:38:59

Az 1.feladat vázlatosan.

Legyen f(n)=\sum_{(k,n)=1,0<k<n}e^{i\frac{2\pi}nk}, ha n>1 és f(1)=1

g(n)=\sum_{(k,n)=1,0<k<n}e^{i\frac{2\pi}n2k}, ha n>1 és g(1)=1

Nyilván f(n) az n-dik primítiv egységgyökök összege, g(n) pedig a négyzetösszege,ezért a kettős szorzatok összege \frac{f^2-g}2. Először bizonyítsuk be, hogy f és g multiplikatívok. Ha ez megvan, akkor kiszámolható, hogy

f(p^\alpha)=-1, ha \alpha=1 és 0 egyébként, azaz f(n)=\mu(n) a Möbius-féle függvény. Hasonlóan kapjuk, hogy g(n)=\mu(n), tehát a keresett összeg \frac{\mu^2-\mu}2, ami 1, ha n prím és 0 különben.

Előzmény: [473] thukaert, 2007-01-27 15:40:42
[488] thukaert2007-01-27 22:31:53

A,B legyen két egész elemű mátrix, és legyenek ezek relációban pontosan akkor ha létezik olyan U egész elemű unimoduláris mátrix amellyel A-t balról megszorozva B-t kapjuk.

1) Bizonyítsuk be hogy ekvivalenciarelációt kapunk! 2) Határozzuk meg a k determinánsú n-edrendű mátrixok ekvivalencia-osztályainak a számát!

[487] Csimby2007-01-27 18:49:04

Én ezt úgy ismerem, hogy egy amőba roszat álmodik és ösze-visza forgolódik/nyúlik stb álmában, de eközben sosem lóg le az ágyáról ami mondjuk kör vagy négyzet alakú. Bizonyítsuk be hogy lesz olyan pontja ami ugyanott ébred fel mint ahol lefeküdt.

Könnyebb a következő: Egy kígyó roszat álmodik és öszevisza tekeredik az alvócsövében, de nem lóg ki belőle. Biz be, hogy lesz olyan pontja ami ugyanott ébred mint ahol lefeküdt.

Előzmény: [482] thukaert, 2007-01-27 18:00:16
[486] Lóczi Lajos2007-01-27 18:43:15

Eltévesztettem, nem jóra gondoltam.

Ha magát Brouwert nem használhatjuk, akkor meg kell ismételni a bizonyítást :) Egy elemi fogalmakat használó van leírva pl. itt.

Előzmény: [485] thukaert, 2007-01-27 18:13:32

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]  

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program  
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley