Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[3568] Róbert Gida2012-05-25 12:56:22

Legyen x=\frac{997718293}{1000000000};
y=-\frac{526882921}{1000000000};
z=\frac{462035853}{1000000000}

Sejtésem szerint ez már az optimális x-től kevesebb, mint 10-9-re van.

Előzmény: [3567] Lóczi Lajos, 2012-05-25 02:12:15
[3567] Lóczi Lajos2012-05-25 02:12:15

Keressünk minél nagyobb olyan valós x számot, melyhez megadhatók alkalmas y és z valós számok, hogy az

x8+2y8+3z8\leq1 és x3+7z3\geq3+9y3

egyenlőtlenségek fennállnak.

[3566] Lóczi Lajos2012-05-12 23:11:31

535. feladat. Adjuk meg a háromdimenziós térben az a\ge0, b\ge0, c\ge0, 0\le\frac{1}{2}-a, a(a-b)\le \frac{1}{2}-b és c\le1+bc egyenlőtlenségek által definiált test mindhárom tengelyre eső merőleges vetületének a hosszát.

[3565] jonas2012-05-07 20:29:50

Hát, ha senki nem vállalja, itt a gyors magyarázat.

Vegyünk egy olyan számot, mint

t=1234567.

Ha ezt megszorozzuk tízzel, akkor ugyanazt a sort kapjuk, csak eltolva.

10t=12345670.

Most vonjuk ki egymásból a kettőt. A szemléletesség kedvéért illesszük egymás alá a számjegyeket, így jobban látszik:


\matrix{
10t + 8 =  & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \cr
-t = -     &   & 1 & 2 & 3 & 4 & 5 & 6 & 7 \cr
9t + 8 =   & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
}

Az utolsó kivételével minden helyiértéken két szomszédos számjegyet vonunk ki az eredeti számban, és ebből a két szomszédos számjegyből az első eggyel nagyobb, így mindenhol 1 lesz a különbség. (Az utolsó helyiértéknél csaljunk egy kicsit.)

Most vonjunk ki t-t még egyszer:


\matrix{
9t + 7 =   & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \cr
-t = -     &   & 1 & 2 & 3 & 4 & 5 & 6 & 7 \cr
8t + 7 =   &   & 9 & 8 & 7 & 6 & 5 & 4 & 3 \cr
}

Ezt úgy kell elképzelni, hogy a t minden számjegyét a 9t+7 eggyel nagyobb helyiértéken lévő számjegyéből vonjuk ki, tehát mindegyik számjegyet 10-ből. Így a 10-ből sorra kivonjuk a számokat 1-től valameddigig, ezért az eredmények sorra 9-től mennek egyesével lefelé.

Természetesen ugyanez megy 16-os számrendszerben is:

E16.1234567816+816=FEDCBA9816.

E16.12345678916+916=FEDCBA98716.

E16.123456789A16+A16=FEDCBA987616.

Előzmény: [3564] lorantfy, 2012-05-05 14:02:27
[3564] lorantfy2012-05-05 14:02:27

Adjatok erre egy gyors magyarázatot! Megy ez 16-os számrendszerben is?

[3563] Fálesz Mihály2012-04-23 10:19:11

Alapvetően Attilával értek egyet. A feladattal a baj a kérdésben levő visszacsatolás. A helyes válasz attól függ, hogy mi a helyes válasz.

Számtalan ilyen logikai paradoxon ismert. Ha ez az állítás igaz, akkor én vagyok a Mikulás. Mi a legkisebb pozitív egész, amit nem lehet 1000-nél kevesebb karakterrel definiálni?

Az adott kérdésben a 0 az egyetlen "stabil" válasz, de lehetne próbálkozni a 0/25/25/50 (nincs stabil válasz) vagy a 25/75/75/75 (a 0, 25 és a 75 is stabil) változatokkal is...

* * *

Ha az "én most nem mondok igazat" mondatba beleteszünk egy kis elektronikus késleltetést, akkor hívhatjuk astabil multivibrátornak. :-)

[3562] Sirpi2012-04-23 09:18:07

Azért ne félj a %-tól (\%-nak kell írni).

Előzmény: [3561] lorantfy, 2012-04-22 19:49:21
[3561] lorantfy2012-04-22 19:49:21

Szerintem nem kell ahhoz 100 emberrel megoldatnunk a feladatot, hogy tudjuk, az A, B, C, D lehetőségek közül véletlenül kiválasztva egyet 1/4 lesz a kiválasztás esélye. Mivel véletlenszerűen választunk nem is nézzük meg milyen számokat takarnak ezek a válaszok. Négy egyforma boríték közül választunk, melyekben egy papíron ott vannak az adott számok. Mit jelent az, hogy helyes a választásod? Azt, hogy kinyitva a borítékot amit választottál, olyan szám lesz benne, amilyen valószínűséggel kiválaszthattad éppen azt a számot. A feladatban viszont látjuk ezeket a számokat és éppen az okozza az ellentmondást, hogy egyik értéke sem egyezik meg azzal az eséllyel amivel ő maga kiválasztható. A kérdés szerintem feltehető, és lenne is jó válasz a kérdésre, ha a válaszok pl.ezek lennének? A)15 B)50 C)35 D)50 Ekkor az 50 jó válasz lenne. (A százalékokat az ismert okok miatt elhagytam.)

Előzmény: [3558] jenei.attila, 2012-04-22 18:08:49
[3560] SmallPotato2012-04-22 19:19:05

Javítás az elveszett végű bekezdéshez.

... Ha a 25 % pontosan egyszer szerepelne a helyes adatok között, akkor korrekt válasz lenne adható. A kérdés egy valószínűség, ami a kedvező és az összes esetek számának konkrét ismeretében egyértelműen eldönthető.

Előzmény: [3559] SmallPotato, 2012-04-22 19:14:48
[3559] SmallPotato2012-04-22 19:14:48

"Bármi más válaszok lennének, akkor is értelmetlen lenne a kérdés."

"A baj az, hogy a kérdés maga értelmetlen, ... nem lehet rá igennel vagy nemmel válaszolni"

Szerintem a kérdés egyáltalán nem értelmetlen. "Ha véletlenszerűen kiválasztasz egy választ, mi az esélye, hogy a helyeset választottad?" Ha a 25

A dolgozatos példádhoz: egy valószínűséget nem lehet (de nem is kell hogy lehessen) egyetlen elemből álló minta várható értékéből megjósolni. (100 dolgozat persze az eredeti kérdésre szintén nem adná meg a választ.)

Előzmény: [3558] jenei.attila, 2012-04-22 18:08:49
[3558] jenei.attila2012-04-22 18:08:49

Véleményem szerint ennek a feladatnak egész más baja van, mint hogy kétszer szerepel benne a 25 százalék és egyszer az 50 százalék. Bármi más válaszok lennének, akkor is értelmetlen lenne a kérdés. Képzeljük el, hogy 100 emberrel megoldatjuk a feladatot, majd elkezdjük kijavítani a dolgozatokat. Ha 25 százalék a helyes válasz, akkor várhatóan 25 helyes megoldás lesz. De mi a helyes megoldás az első dolgozat javításakor? Már egy dolgozatnál is el kellene tudni dönteni, hogy az adott válasz helyes-e vagy nem. A baj az, hogy a kérdés maga értelmetlen, abban az értelemben, hogy nincs igazságtartalma (nem lehet rá igennel vagy nemmel válaszolni). Ez kb. olyan, mintha azt kérdeznénk: "ez a kérdés igaz?". Önmagáról kérdez (vagy állít) valamit, aminek egyszerűen nincs igazságtartalma. Az ilyen állítások nem megengedhetők. Leginkább talán a Russel paradoxonhoz hasonlít, ami abból adódik, hogy nem lehet "ész nélkül" halmazokat kreálni. Vagy pl. az "ez a mondat hamis" állítás sem igazi állítás, ezért értelmetlen megkérdezni, hogy igaz-e vagy sem. Tehát a feladat sokkal inkább logikai mintsem valószínűségszámítási. Egyébként érdekes feladat, mondjátok el a véleményeteket róla.

Előzmény: [3556] lorantfy, 2012-04-20 22:37:01
[3557] HaliPeu2012-04-21 15:54:28

Szerintem a megoldás 0, mert az pont nullaszor szerepel, ezért 0

[3556] lorantfy2012-04-20 22:37:01

Egy jó választ kell kiválasztanunk a 4 közül, ennek az esélye 0,25. Tehát a jó válasz a 0,25. Ebből viszont kettő van, így a kiválasztásának esélye 0,50. Vagyis a jó válasz az 0,50. Ebből viszont csak 1 van, így a véletlen kiválasztás esélye 0,25... Szóval paradoxon. Akkor lenne megoldása, ha a 0,25 egyszer vagy az 0,50 kétszer szerepelne, de egyszerre csak az egyik.

Előzmény: [3552] Hajba Károly, 2012-04-14 19:44:58
[3555] joe2012-04-14 22:44:56

If you choose an answer to this question at random, what is the chance you will be correct?

A) 50

Előzmény: [3550] lorantfy, 2012-04-13 21:09:24
[3554] Zilberbach2012-04-14 20:06:41

25 + 50 + 60 + 25 = 160

160:4 = 40

[3553] Zilberbach2012-04-14 19:58:01

"Change" helyett: chance.

Előzmény: [3551] jonas, 2012-04-14 16:47:05
[3552] Hajba Károly2012-04-14 19:44:58

Ez nem egy paradoxon?

Előzmény: [3550] lorantfy, 2012-04-13 21:09:24
[3551] jonas2012-04-14 16:47:05

Átirat.

If you choose an answer to this question at random, what is the change you will be correct?

A) 25%

B) 50%

C) 60%

D) 25%

Előzmény: [3550] lorantfy, 2012-04-13 21:09:24
[3550] lorantfy2012-04-13 21:09:24
[3549] Róbert Gida2012-01-15 20:35:34

Egy variánsa ismert feladat: 16 egymásutáni egész szám közt mindig van olyan, amely relatív prím a többihez. Míg 17 számra ez nem igaz.

Előzmény: [3541] Sirpi, 2012-01-15 07:40:05
[3548] Sirpi2012-01-15 17:48:42

Én is ezt találtam meg (kézzel).

Előzmény: [3545] jonas, 2012-01-15 11:16:07
[3547] jonas2012-01-15 13:13:49

Épp ellenkezőleg. Hasznos, hogy elmondtad, hogy lehet megtalálni egyszerűen ezt a megoldást. Én egyszerűen csak végignéztem az összes kis számot, hogy melyik működik. Mivel azt írtad, hogy van 800 alatt megoldás, ezért kezdtem el kis példát keresni.

Előzmény: [3546] FlagD, 2012-01-15 13:07:44
[3546] FlagD2012-01-15 13:07:44

Akkor én is lelövöm az én "megoldásom".A két számot a-val, és b-vel fogom jelölni. b=a+k (vagyis a és b között k-1 darab számra kell teljesülnie a feltételnek.)

Az első, ami beugrott, az az ismert feladat, hogy bármely pozitív egész n-re van egymás utáni n darab összetett szám. 6!+1=721 pedig osztható 7-tel, vagyis a=6!, és b=6!+7 jó választás lesz. Azt néztem el, hogy 727 persze nem osztható 7-tel. (No persze annak is be kellett volna ugrani, hogy Wilson-tétele miatt,akkor már pl. 5|4!+1 is igaz, és a=4! is hasonló okok miatt nem megfelelő)

És akkor, hogy lehet jó megoldást adni: Az könnyen látható, hogy a,b>2. Mivel két szomszédos szám legnagyobb közös osztója : (n;n+1)=1, emiatt (a;b-1)>1, és (b;a+1)>1 (és így a-nak, és b-nek kell lennie különböző prímosztójának ). Ha elkezdjük b-1;a-val, illetve b;a+1-gyel az euklideszi-algoritmust, akkor mindkét esetben az első maradék: k-1. Ez a fentiek miatt azt jelenti, hogy k-1-nek legalább két különböző prímosztója van. Nézzük sorba az eseteket (amikor pontosan két prímosztója van k-1-nek!)

1. Ha k-1=2*3. Ekkor b=a+7. (Legyen most 2|a, és 3|b; a fordított eset hasonló!) Ekkor a+1 (=b-6 miatt!); a+2; a+4 (=b-3 is!); a+6 számok "jók", de a+3=b-4 mind a-val, mind b-vel relatív prím. Vagyis ez az eset nem lehet!

2-3. Hasonlóan k-1=2*7 (2|a,7|b) esetre pedig a+7=b-8 "rossz"; míg k-1=2*5 (2|a,5|b) esetre: a+5=b-6 "rossz", amennyiben 3 nem osztója b-nek, és a+9=b-2 "rossz", amennyiben 3 nem osztója a-nak (és persze 3 vagy a-t, vagy b-t oszthatja csak!)

4. Legyen most k-1=3*5 (itt lesz a jó megoldás), illetve 3|a, 5|b! Válasszuk a-t párosnak is (ekkor persze b is az). Így a+1(=b-15 miatt), a+2, a+3,a+4;a+6(=b-10 miatt is);a+8;a+9;a+10;a+11(=b-5 miatt);a+12;a+14;a+15 eleve "jók" (a,és b választása miatt). a+5=b-11; a+7=b-9; a+13=b-3 számokat kell vizsgálnunk csak. Mivel 3 nem osztja b-t, 5 pedig a-t, a fenti három vizsgált szám csak úgy lehet "jó", ha 11|b, míg 7*13|a teljesül. Most ott tartunk, hogy 2*3*7*13=546|a , míg 2*5*11=110|b. Vegyük észre, hogy 5*2*5*11=550 "közel" van 546-hoz. Ha mind 546-t, mind 550-t szorozzuk 4-gyel, akkor megfelelő a-t, b-t kapunk. Vagyis a=2*2*2*3*7*13 = 2184 , és b=2*2*5*5*11 = 2200 valóban jó választás.

Azt még nem látom pontosan, hogy miért ez a legkisebb. Ja és elnézést jonastól (természetesesn Övé az érdem), hogy lelőttem, hogy a megoldása hogy jöhetett ki, a rossz megoldásom miatt próbáltam "kiköszörülni a csorbát"!

Üdv!

Előzmény: [3545] jonas, 2012-01-15 11:16:07
[3545] jonas2012-01-15 11:16:07

Lelőjem? A legkisebb megoldás a (2184, 2200).

Előzmény: [3541] Sirpi, 2012-01-15 07:40:05
[3544] jonas2012-01-15 11:09:56

Esetleg úgy érted, olyat találtál, ahol a két szám különbsége van 700 és 800 között? Mert olyan megoldás biztosan nincsen, ahol mindkét szám 800 alatt van.

Előzmény: [3543] FlagD, 2012-01-15 10:14:46

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]