Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Lejárt határidejű KÖMAL feladatokról

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]  

Szeretnél hozzászólni? Jelentkezz be.
[395] rizsesz2008-05-26 09:58:57

Egyszerűen nem kell reagálni a hozzászólásaira, a feladataira, azt hiszem ez a legegyszerűbb megoldás.

Előzmény: [394] Sirpi, 2008-05-26 08:35:33
[394] Sirpi2008-05-26 08:35:33

Ha gondolkodtál volna kicsit, mielőtt megint fröcsögsz, akkor rájöttél volna, hogy a feladat nincs elszúrva. Senki nem mondta, hogy minden N-re kell lennie ilyen színezésnek. Ha nincs, akkor arra az N-re az állítás üres. A stílusod viszont nem nagyon fejlődik...

Előzmény: [393] Róbert Gida, 2008-05-26 00:58:52
[393] Róbert Gida2008-05-26 00:58:52

"A.448. helyett új példát tűztek ki."

No igen. De ezt is sikerült elszúrniuk: "A. 448. Az 1,2,...,N számokat kiszíneztük 3 színnel úgy, hogy mindegyik szín legfeljebb \frac{N}{2}-ször szerepel."

N=1-re egy lehetséges színezést azért megnéznék...

Előzmény: [389] Róbert Gida, 2008-05-08 16:58:43
[392] Python2008-05-18 17:56:28

Legyen PD1 felezőpontja G1, PD2 felezőpontja G2! Mivel A felezi PQ-t, AG1 középvonal PQD1 hároszögben, így AG1 párhuzamos QD1-el. Hasonlóan AG2 párhuzamos QD2-vel.

Tegyük fel, hogy QD1-merőleges PF1-re! Ekkor AG1 is merőleges PF1-re. Mivel PD1 merőleges AD1-re, így F1PD1\angle és G1AD1\angle szögek megegyeznek (merőleges szárú szögek). Így F1PD1 és G1AD1 háromszögek hasonlóak, mivel a szögeik megegyeznek. Így \frac{AD_1}{PD_1}=\frac{G_1D_1}{F_1D_1}, de így, mivel PD1=2G1D1 és D1B1=2F1D1, \frac{AD_1}{PD_1}=\frac{PD_1}{B_1D_1}, ami azt jelenti, hogy AD1P és PD1B1 derékszögű háromszögek is hasonlóak. Így pl. D1PB1\angle=D1AP\angle=90o-D1PA\angle, és emiatt B1PA\angle=90o, ami azt jelenti, hogy AP a háromszög A-ból induló magassága, P a magasságtalppont B1B2-n (mivel a háromszög hegyesszögű, ez B1B2 szakaszon van).

Innen visszfelé ugyanez elmondható a másik oldalon, ami miatt teljesül a feladat állítása. (APB2\angle=90o, így AD2P és PD2B2 hasonló, mivel PAD2\angle=90o-APD2\angle=D2PB2\angle, így AD2G2 és PD2F2 is hasonló (\frac{AD_2}{PD_2}=\frac{G_2D_2}{F_2D_2} miatt), de ekkor G2AD2\angle=F2PD2\angle, és ebből, valamint PD2 és AD2 merőlegességéből következik, hogy AG2 merőleges PF2-re, így QD2 merőleges PF2-re, és ezt kellett igazolni.)

A lényeg az, hogy ha van két hasonló háromszögünk, és mindkettőt "félbevágjuk" egymásnak megfelelő csúcsaikból induló súlyvonalakkal, akkor a megfelelő részháromszögek is hasonlóak lesznek. Ezt itt csak derékszögű háromszögekre igazoltam és használtam fel.

Előzmény: [390] S.Ákos, 2008-05-17 09:21:05
[391] BohnerGéza2008-05-17 16:58:02
Előzmény: [390] S.Ákos, 2008-05-17 09:21:05
[390] S.Ákos2008-05-17 09:21:05

Valaki tudna mutatni egy elemi geometriai megoldást a B.4088-as feladatra?

[389] Róbert Gida2008-05-08 16:58:43

A.448. helyett új példát tűztek ki.

Előzmény: [382] Róbert Gida, 2008-03-27 01:02:18
[388] rizsesz2008-04-16 14:22:44

Nagyon szép megoldás, kedves Ákos (bár eléggé adta magát a kis Fermat-tétel :)).

Néhány gondolat amúgy eszembe jutott a kitűzött K problémákkal kapcsolatban.

A K. 167. ugyanabba a hibába esik, mint a K. 90.

Azt kérte ott ugyanis a feladat, hogy adjunk meg minél több megoldást, míg maximális pont arra járt, ha igazoltad, hogy két megoldás van és nincsen több. Érdemes lenne ezt a javítóknak most is figyelembe venni, és ilyen hibába nem beleesni újra.

A másik a K. 168. Ennek második része pedig már korábban tárgyalt B feladat (azt hiszem 2002 - 2003 májusi). Ez persze nem először fordul elő, de úgy gondolom, hogy ilyenekre érdemes lenne ügyelni.

Üdv, rizs

[387] S.Ákos2008-04-16 12:20:38

helyesen: (n,a-1)\gep>1

Előzmény: [386] S.Ákos, 2008-04-16 12:19:37
[386] S.Ákos2008-04-16 12:19:37

B.4078. Legyen p n legkisebb prímosztója, k pedig a rendje mod p. Ekkor a feltételek alapján (i) (p,a)=1 (ii)k|n és (iii)k<p (ez a Kis-Fermat tételből és (i)-ből következik, mivel ekkor p|ap-1-1). Mivel p n legkisebb prímosztója, így a [2;p-1] intervallumban nem oszthatja egy szám sem, mivel ez ellentmondana p minimalitásának.\implies k=1, így p|a-1 \implies (a-1,n)=p>1

[385] kdano2008-03-30 23:06:35

Ez sem igaz. Laci n=5-ig küldött ellenpéldát. n=8-tól viszont már igaz az állítás.

Előzmény: [383] rizsesz, 2008-03-27 08:23:15
[384] rizsesz2008-03-27 08:23:36

2n-1-et.

[383] rizsesz2008-03-27 08:23:15

de n>3-ra már jó, csak akkor nem A-nak való ez a feladat. (bár lehet, hogy van olyan konstrukció, ami még jobban szűkíti a 2n/2-t.

Előzmény: [382] Róbert Gida, 2008-03-27 01:02:18
[382] Róbert Gida2008-03-27 01:02:18

Javítás: rossz volt az ellenpélda:

n=1-re: S=A, teljesíti a feltételeket, de |S|=1<3*1, ellentmondás. Megjegyzem, hogy n=1 esetén S más nem is lehet, hogy teljesítse a feltételeket, az |S|=3 álom.

n=2-re: a legkisebb S ellenpélda: S=AA,AB,BA, erre |S|=3<2*3, ellentmondás.

n=3-ra egy ellenpélda (lehet, hogy nem a legkisebb): S=AAA,AAB,ABA,ABB,BAA,BAB,BBA (látszik a minta?), itt |S|=7<3*3, ellentmondás.

Sokat nem foglalkozott a példával a kitűző, vagy csak sajtóhiba. Ezt gondolom a Fazekasban egyből kiszúrták.

Előzmény: [381] Róbert Gida, 2008-03-27 00:39:19
[381] Róbert Gida2008-03-27 00:39:19

A.448

AHA, igazad van. Ilyen rossz feladatot régen olvastam. n=1-re biztosan nem igaz: Legyen S="B","C" ez teljesíti a feltételeket, de |S|=2<3, ellentmondás.

Egyébként amit én kb. 5 perc alatt találtam: n>12-re az állítás biztosan igaz! Sőt az alsó korlát ultragyenge. Ok: 1 darab n hosszú S-beli szó 3n darab szót tilt le W-ből, hiszen 1 pozicióra 3 lehetőség van és n pozició van, Így legfeljebb |S|*3n darab szót tudunk letiltani, aminek nagyobb vagy egyenlőnek kell lennie, mint -1+4n, hiszen ennyien vannak az n hosszú szavak, a csupa "A" nélkül. Azaz |S|*3n\geq-1+4n, tehát |S|\geq \frac {4^n-1}{3^n}. Ez pedig n>12-re indukcióval belátható, hogy legalább 3*n, ami kellettt, sőt a becslés szerint S-nek exponenciálisan sok eleme van, így a feladat lineáris becslése nudli.

Előzmény: [380] kdano, 2008-03-26 21:21:43
[380] kdano2008-03-26 21:21:43

Annak a feladatnak az állítása nem igaz..

Előzmény: [379] ik68, 2008-03-26 13:50:06
[379] ik682008-03-26 13:50:06

Ha lenne valakinek egy megoldasa az A.448.-as feladatra, örömmel venném. Köszönöm!

[378] nadorp2008-03-21 15:26:41

Igaz. A vége nem kell, elbonyolítottam.

Előzmény: [377] Lóczi Lajos, 2008-03-21 14:28:20
[377] Lóczi Lajos2008-03-21 14:28:20

De miért kell integrálra hivatkozni? Nem elég az, hogy ha egy függvény deriváltja nemnegatív, akkor a függvény nemcsökkenő?

Előzmény: [376] nadorp, 2008-03-21 10:20:26
[376] nadorp2008-03-21 10:20:26

A.447

A feladat következő általánosítását bizonyítjuk be:

Legyenek a1,...,an tetszőleges valós számok és b1,...,bn tetszőleges pozitív valós számok. Ekkor \sum_{i=1}^{n}\sum_{j=1}^{n}\frac{a_ia_j}{b_i+b_j}\geq0 Bizonyítás:

Legyen g(x)=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{a_ia_j}{b_i+b_j}
x^{b_i+b_j} (x\geq0). Azt kell bizonyítani, hogy g(1)\geq0

Nyilván g(0)=0. Továbbá a függvény deriváltjára

g'(x) =\sum_{i=1}^{n}\sum_{j=1}^{n}a_ia_jx^{b_i+b_j-1}=
\frac1x\sum_{i=1}^{n}\sum_{j=1}^{n}(a_ix^{b_i})(a_jx^{b_j})=
\frac1x\left(\sum_{i_1}^{n}a_ix^{b_i}\right)^2

Mivel \alpha>-1 esetén \int_0^1x^\alpha dx létezik , ezért bi+bj-1>-1 miatt g' integrálható a [0;1] intervallumon és a fentiek miatt g'(x)\geq0. Tehát

g(1)=g(1)-g(0)=\int_0^1g^{'}(x)dx\geq0, hiszen nemnegatív függvény integrálja is nemnegatív.

[375] sakkmath2008-03-18 17:16:02

A B. 4056. feladat itt olvasható rapid megoldásával kapcsolatban megjegyzem, hogy létezik tisztán elemi geometriai megoldás is, amely - esetleg - érdekesebb fordulatokat ígér...

[374] nadorp2008-03-16 11:30:21

A.443

Nevezzük a p kerületű hatszöget H-nak, csúcsai legyenek A,B,C,D,E,F és nevezzük az oldalfelező pontok által meghatározott hatszöget H1-nek az Fi ( i=1...6) csúcsokkal. Húzzuk be az AC,BD,...,FB átlókat. Ezen átlók metszéspontjai H belsejében egy olyan H2 hatszöget határoznak meg, melynek oldalai nyilván párhuzamosak H1 egy-egy oldalával ( melyek középvonalak), tehát H2 szögei szintén 120o-sak. Ebből következik, hogy az AEC és BDF háromszögek minden szöge 60o, tehát ezek a háromszögek szabályosak. Mivel H2 szemközti oldalai nyilván párhuzamosak is, ezért H csúcsait úgy kaphatjuk meg, hogy H2 oldalaira kifelé egy-egy szabályos háromszöget állítunk. Legyenek H2 oldalai a1,...,a6 hosszúak. Ekkor

p_1=\frac{a_1+a_2+a_3}2+\frac{a_2+a_3+a_4}2+...+
\frac{a_6+a_1+a_2}2=\frac32\sum_{i=1}^6{a_i}.

Másrészt AB=\sqrt{a_1^2+a_1a_2+a_2^2}=\sqrt{\frac{3(a_1+a_2)^2+
(a_1-a_2)^2}4}\geq\frac{\sqrt3}2(a_1+a_2)

Ha ezt elvégezzük H mindegyik oldalára akkor az kapjuk, hogy

p\geq\frac{\sqrt3}2(a_1+a_2+...+a_6+a_1)=
\sqrt3\sum_{i=1}^6{a_i}=\frac2{\sqrt3}p_1

[373] S.Ákos2008-03-15 22:15:42

A B. 4055.-ös feladatnál (Bizonyítsuk be, hogy minden n!-nál nem nagyobb pozitív egész szám felírható az n! legfeljebb n darab különböző osztójának összegeként.) elég könnyen kijön indukcióvan, h n>1 esetén n-1 db tag is elég. Az lenne a kérdésem, hogy ez mindig szükséges-e, vagy lehet tovább csökkenteni?

[372] Káli gúla2008-03-12 09:18:12

A kiemelt képletben a szorzat indexelése is 0-tól kezdődik, tehát a Lucas tétel helyesen:

Legyen n és k felírása p alapú számrendszerben (esetleg vezető nullákkal) n=\overline{n_d...n_{1}n_0} és k=\overline{k_d...k_{1}k_0}. Ekkor

\prod_{i=0}^{d} \binom{n_i}{k_i} \equiv \binom{n}{k}   ~~~({\rm mod~} p)

[371] Káli gúla2008-03-12 00:20:19

Az A.445. feladat megoldása. Feltehető, hogy p páratlan, mert \binom00=1 miatt p=2-re az állítás triviális. Két észrevételre lesz szükség: (1) Minden mod p maradékosztály előállítható alkalmasan választott C_j=\binom{2j}{j} számok szorzataként; (2) A Cj számok zártak a szorzásra, azaz ilyenek szorzata is ilyen alakú, mod p.

(1) Mivel C_k = \binom{2k}{k}=\frac{2k(2k-1)}{k^2}\binom{2k-2}{k-1}=(4-2/k)C_{k-1}, így indukcióval azt kapjuk, hogy C_k=\prod_{j=1}^k (4-2j^{-1}). Belátjuk, hogy az aj=4-2j-1 számok közül már az első s=(p-1)/2 darab generálja az összes nem-nulla maradékosztályt. Az aj-k nyilván j=1,...,p-1 esetén mind különbözők, és aj=0 éppen a j=1/2=s+1-hez tartozik, ezért az a1,a2,...,as számok egymástól és 0-tól is különbözők. Legyen g primitív gyök mod p (g hatványai minden --azaz (p-1) darab-- nem-nulla maradékosztályt előállítanak). Ekkor az a1,a2,...,as elemekhez tartozó pontosan feleannyi darab kitevőre logikailag három eset lehet: 1) mind páros; 2) mind páratlan; 3) van közöttük két szomszédos. Az első eset nem fordulhat elő, mert akkor az aj-k éppen az összes mod p négyzetszámok lennének, ami nem lehet, hiszen a 4 olyan négyzetszám, amely egyáltalán nem szerepel az aj-k között. A második esetben az 1 kitevőhöz tartozó j-re g=a_j=\frac{C_j}{C_{j-1}}=C_j C_{j-1}^{p-2}. A harmadik esetben van olyan i,j, hogy a_i=g^\alpha és a_j=g^{\alpha+1}, tehát g=\frac{a_j}{a_i}=\frac{C_j}{C_{j-1}}\frac{C_{i-1}}{C_i}= C_j C_{j-1}^{p-2} C_{i-1} C_{i}^{p-2}. Így g-t, és annak hatványaival az összes nem-nulla maradékot megkaphatjuk a Cj-k hatványainak szorzataként. Hozzávéve még, hogy Cs+1=0, (1)-et teljesen igazoltuk.

(2) A bizonyításnak ez a része tulajdonképpen a binomiális együtthatókról szóló Lucas-tétel, ami a következőt mondja ki: Legyen n és k felírása p alapú számrendszerben (esetleg vezető nullákkal) n=\overline{n_d...n_{1}n_0} és k=\overline{k_d...k_{1}k_0}. Ekkor

\prod_{i=1}^{d} \binom{n_i}{k_i} \equiv \binom{n}{k}   ~~~({\rm mod~} p)

(A szokásos feltevéssel \binom{a}{b}=0, ha b>a.) Bizonyítás. Legyen n=Np+n0 és k=Kp+k0, n0,k0<p. Ekkor \binom{n}{k}= \binom{N}{K} \binom{n_0}{k_0} + \sum_{i=1}^{N} \sum_{j=1}^{p-1}\binom{p}{j} u_{ij}, ahol uij egészek. Ezt úgy láthatjuk be, hogy veszünk egy N sorból és p oszlopból álló táblát, kiegészítjük egy (N+1)-edik sorral, amiben csak n0<p mező van, és osztályozzuk ennek az n mezőnek a k elemű részhalmazait aszerint, hogy csak teljes, vagy töredék sorokat is tartalmaznak az N×p-s téglalapban. A jobb oldalon az első tag azon k elemű részhalmazok számát adja, amelyek csak teljes sorokat tartalmaznak a téglalap alakú részből (N teljes sorból kell K sort, az utolsó n0 mezőből k0-t venni), a kettős szumma tagjai pedig azokét, amelyekben az első töredékes sor az i-edik, és az i-edik sorral vett metszet j elemű (1\lej\lep-1). Ezekben a tagokban a binomiális együttható osztható p-vel, ezért mod p a teljes szumma elhagyható: \binom{n}{k}\equiv \binom{N}{K} \binom{n_0}{k_0} ~~({\rm mod~} p). Ebből a Lucas-tétel már egyszerűen következik teljes indukcióval.

Összerakva a két segédtételt: egy r\neq0 maradékosztályt az első alapján felírhatunk r\equiv \prod_{j=1}^{(p-1)/2} \binom{2j}{j}^{\alpha_j} ~~({\rm mod~}p) alakban (\alphaj\ge0, j=1,..,(p-1)/2), majd kereshetünk egy olyan n egész számot, amelynek p-adikus felírásában a j számjegy \alphaj-szer szerepel (j=1,..,(p-1)/2). Mivel 2n felírásában az n számjegyei kétszereződnek (2j<p miatt nincs átvitel), így a (2) rész szerint

r \equiv \prod_{j=1}^{(p-1)/2} \binom{2j}{j}^{\alpha_j}\equiv \binom{2n}{n} ~~({\rm mod~}p).

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]