Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Lejárt határidejű KÖMAL feladatokról

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]  

Szeretnél hozzászólni? Jelentkezz be.
[955] w2015-01-20 16:19:21

A fórumon kétféle megoldás is szerepelt: ez és ez.

Előzmény: [954] Kovács 972 Márton, 2015-01-20 16:15:42
[954] Kovács 972 Márton2015-01-20 16:15:42

Tudna valaki megoldást/segítséget mutatni az A.536-hoz? A feladat szövege megtalálható itt.

[953] w2015-01-16 16:55:14

Az A.630. feladat szerintem is nagyon könnyű volt. Könnyű kitűzni feladatot úgy, hogy sokkal bonyolultabb megoldásra gondol valaki. (Ha meg van cél mögötte, akkor olyasmi lehet, hogy népszerűsítse a pontversenyt.)

A B.4673. feladat alulértékelését azzal magyaráznám, hogy nagyon ismert példa.

Előzmény: [952] HoA, 2015-01-16 16:11:24
[952] HoA2015-01-16 16:11:24

Mit gondoltok, miért volt "A" kategóriás feladat &tex;\displaystyle \bf A 630&xet; ? Szerintem a hasonló témájú &tex;\displaystyle \bf B 4673&xet; nehezebb volt.

[951] Róbert Gida2014-12-19 15:05:48

10 hosszú a leghosszabb sorozat ami nem tartalmaz 4 hosszú számtani sorozatot, egy ilyen: 1,2,3,2,1,2,1,0,1,2.

Továbbá nagyon úgy tűnik számomra, hogy 5 hosszú már mindig lesz benne, 70000 tagút is könnyű találni. 54 tagúból pedig összesen 1514921499 darab van, ha &tex;\displaystyle x_1=0;x_2=1&xet;-gyel indul a sorozat (nyilván &tex;\displaystyle x_1&xet; nem érdekes, és feltehetjük &tex;\displaystyle x_2=1&xet;-et is, különben szorozzunk minden tagot (-1)-gyel).

Előzmény: [949] w, 2014-12-17 23:16:46
[950] w2014-12-18 15:28:11

Az &tex;\displaystyle A=11,8&xet; választással és

&tex;\displaystyle f(t)=\sum_{k=1}^\infty A^k\sin\frac{t}{(2A)^k}&xet;

függvénnyel számolva, nem lesz &tex;\displaystyle 215&xet; hosszú számtani sorozat.

Remélem, azért nem számoltam el.

A hivatalos megoldásnál sokkal kevésbé hanyag a számolás, de az alapötletek ugyanazok. A fő eltérés, hogy a (3) becslésnél &tex;\displaystyle \frac 15&xet; helyett &tex;\displaystyle 4\sin^2\frac12\sin\frac\pi3>0,7962&xet;-es szorzótényező jön ki, mert &tex;\displaystyle D=(h+1)d&xet; esetén már &tex;\displaystyle D\in\left[(2A)^s;2\cdot (2A)^s\right]&xet;.

Előzmény: [946] Fálesz Mihály, 2014-12-16 16:21:22
[949] w2014-12-17 23:16:46

Nagyon köszönöm. Végül nagyjából ugyanúgy számoltam, mint a megjelent megoldásban (az ötletet követve, a "4 hosszú számtani sorozat"-dolog kicsit bonyolultabbá tette a számításokat).

Biztos lehetne még rágni ezen a szinuszos függvényen párszázat a korláton, ahhoz mondjuk le kellene írni egy megoldást, csak a lényeget kiemelve. Kíváncsi lennék másik függvényre is.

Az már picit nemtriviális, hogy azért &tex;\displaystyle 4&xet;-tagú számtani sorozat biztos van, de még egyszerűen kijön fabunkóval. Ennek bizonyításához írjunk &tex;\displaystyle x_k&xet; alá &tex;\displaystyle +&xet; jelet, ha &tex;\displaystyle x_{k+1}-x_k=1&xet; és &tex;\displaystyle -&xet; jelet, ha &tex;\displaystyle x_{k+1}-x_k=-1&xet;. 1.) Hogyha &tex;\displaystyle 6&xet; tagon keresztül semely két szomszédos jel sem egyezik meg, akkor kész, mert lesz &tex;\displaystyle +,-,+,-,+,-&xet; típusú rész, ami négytagú (konstans) számtani sorozatot jelez. 2.) Ha három szomszédos jel azonos, akkor az is négytagú sz.s.-t ad. 3.) Egyébként: Van a sorozatunk közepén két szomszédos azonos jel, mondjuk &tex;\displaystyle -&xet;. Akkor mivel már harmadik &tex;\displaystyle -&xet; nem lesz mellettük, így &tex;\displaystyle +,-,-,+&xet; részünk van; akkor utóbbi &tex;\displaystyle +&xet; után ha &tex;\displaystyle +,-&xet; vagy &tex;\displaystyle -,+&xet; jön, akkor találunk négytagú sz.s.-t, mert &tex;\displaystyle +,-&xet; vagy &tex;\displaystyle -,+&xet; esetén &tex;\displaystyle x_{k+2}=x_k&xet;. Ha &tex;\displaystyle +,+&xet; jön, akkor van három &tex;\displaystyle +&xet; egymás után, marad az a lehetőség, hogy &tex;\displaystyle +,-,-,+,-,-&xet; lesz. Ezt bármeddig folytathatnám: &tex;\displaystyle +,-,-,+,-,-,+,-,-,...&xet;. De akkor találunk három darab &tex;\displaystyle +,-,-&xet; blokkot, ezekben egyenlőt változik &tex;\displaystyle (x_k)&xet; => 4-tagú sz.s.

Remélem, senkit sem zavar, hogy &tex;\displaystyle +,-&xet; írására volt éppen kedvem &tex;\displaystyle 0,1&xet; helyett.

Előzmény: [946] Fálesz Mihály, 2014-12-16 16:21:22
[948] w2014-12-16 19:34:26

Elküldtem e-mailben.

Előzmény: [947] Kovács 972 Márton, 2014-12-16 16:53:40
[947] Kovács 972 Márton2014-12-16 16:53:40

Leírnád kérlek a megoldását? Gondolkodtam rajta, de azóta sem sikerült rájönni.

Az világos, hogy &tex;\displaystyle A&xet; és &tex;\displaystyle B&xet; játszani fog egymással, mert ha az &tex;\displaystyle A&xet; csapat megszerzett &tex;\displaystyle x&xet; pontja mellett &tex;\displaystyle B&xet; megver mindenki mást, (ekkor még biztosan &tex;\displaystyle A&xet; nyer) akkor ennél &tex;\displaystyle B&xet; nem tud több pontot szerezni, így &tex;\displaystyle A&xet; &tex;\displaystyle y>x&xet; esetén is biztosan nyer.

Előzmény: [942] w, 2014-12-13 14:31:46
[946] Fálesz Mihály2014-12-16 16:21:22

Endre a következő megoldási ötletet küldte az A. 628. feladathoz.

Vegyük ezt a függvényt: &tex;\displaystyle f(x) = \sum_{k=1}^{\infty} 50^k \sin\frac{x}{100^k}&xet;. Ha egy 4 hosszú számtani sorozat különbségei &tex;\displaystyle 100^s&xet; közelében vannak, akkor az &tex;\displaystyle 50^s \sin\frac{x}{100^s}&xet; függvény szerinti értékei nagyon távol vannak a lineáristól. &tex;\displaystyle \sum_{k=1}^{s-1} 50^k \sin\frac{x}{100^k}&xet; amplitúdója kicsi, &tex;\displaystyle \sum_{k=s+1}^{\infty} 50^k \sin\frac{x}{100^k}&xet; pedig ilyen skálán nézve majdnem lineáris, ezért mindezek összege nem adhat 4 ponton lineáris függvényt.

Közben leírtam valamivel részletesebben, de érdemes lehet kipróbálni, hogy ki tudod-e számolni magad is, illetve a megoldásbeli kb. 900-es korlátot meddig tudod lenyomni.

Előzmény: [943] w, 2014-12-15 16:39:56
[945] w2014-12-15 19:47:32

Igen, én is ismerem a Van der Waerden-tételt. De azért köszi.

Előzmény: [944] Róbert Gida, 2014-12-15 19:25:03
[944] Róbert Gida2014-12-15 19:25:03

Korlátos sorozatra igaz, következik a Van der Waerden tételből. Ekkor az sem kell, hogy &tex;\displaystyle |x_k-x_{k+1}|=1&xet; teljesül.

(igazából korlátosság sem kell, csak, hogy jó hosszan az &tex;\displaystyle x_k&xet; nem sokat változik).

Előzmény: [943] w, 2014-12-15 16:39:56
[943] w2014-12-15 16:39:56

Az A628-ra valaki [Fálesz] mondana segítséget/megoldást?

[942] w2014-12-13 14:31:46

B.4660. Igazából csak el kell kezdeni, és elegendő apró következtetéssel kijön. Azt mondják, hogy ha &tex;\displaystyle A&xet; csak &tex;\displaystyle x&xet; pontot szerez, akkor mindenképpen nyer, ám megeshet, hogy egy &tex;\displaystyle B&xet; csapat megveri, úgy, hogy &tex;\displaystyle A&xet; &tex;\displaystyle y>x&xet; pontot szerez.

Ebből következik, hogy &tex;\displaystyle A&xet; és &tex;\displaystyle B&xet; egymás ellen fog játszani. Mi lehet ezen meccs eredménye?

Előzmény: [941] Kovács 972 Márton, 2014-12-12 23:47:33
[941] Kovács 972 Márton2014-12-12 23:47:33

Kedves fórumosok!

B.4660 megoldásához tudna valaki ötletet adni? Nem sikerült vele dűlőre jutni, még csak részeredményem sincs.

Egyelőre csak ötletet szeretnék, ha úgysem megy, akkor a megoldásra is kíváncsi leszek.

Köszönöm előre is!

[940] w2014-12-12 19:43:25

A.627. feladatra megjelent a hivatalos megoldás. Leírok egy másik megközelítést (vázlatos lesz).

A hiv. megoldás jelöléseivel élve, legyen &tex;\displaystyle t_n&xet; a Csebisev-polinom megfelelő transzformáltja és &tex;\displaystyle 1=a_0>a_1>\dots>a_n=0&xet; az extremális helyei, továbbá &tex;\displaystyle d=\frac1{2^{2n-1}}&xet;. Tudjuk, hogy &tex;\displaystyle t_n(a_j)=(-1)^j\cdot d&xet;.

Tegyük fel indirekt, hogy &tex;\displaystyle \max_{[0,1]}|f-p|&xet; valamely &tex;\displaystyle f,p&xet; párra kisebb, mint &tex;\displaystyle d&xet;. Legyen &tex;\displaystyle q(x)=-p(x)-t_n(x)+x^n&xet; egy &tex;\displaystyle n&xet;-nél kisebb fokú polinom, akkor

&tex;\displaystyle f(x)-p(x)=f(x)+q(x)-x^n+t_n(x)&xet;(1)

alakú.

Felhasználva az indirekt feltevést: &tex;\displaystyle f(a_j)-p(a_j)<d=t_n(a_j)&xet; páros &tex;\displaystyle j&xet;-kre és &tex;\displaystyle f(a_j)-p(a_j)>-d=t_n(a_j)&xet; páratlan &tex;\displaystyle j&xet;-kre, vagyis

&tex;\displaystyle (-1)^{j-1}[f(a_j)-p(a_j)-t_n(a_j)]>0.&xet;

Ebbe (1)-et beírva:

&tex;\displaystyle (-1)^{j-1}q(a_j)>(-1)^{j-1}[x^n-f(a_j)].&xet;

Írjuk fel a Lagrange-féle interpolációs képletet &tex;\displaystyle q(x)&xet;-re és az &tex;\displaystyle (a_j,q(a_j))&xet; pontokra &tex;\displaystyle j=1,2,\dots,n&xet;-re. Ebből kiderül, hogy

&tex;\displaystyle 0>q(a_0)=q(1)=\sum_{j=1}^n q(a_j)\prod_{i\neq j}\frac{1-a_i}{a_j-a_i}>&xet;

&tex;\displaystyle >\sum_{j=1}^n [a_j^n-f(a_j)]\prod_{i\neq j}\frac{1-a_i}{a_j-a_i}=:S.&xet;(2)

Szeretnénk belátni, hogy &tex;\displaystyle S\ge 0&xet;, akkor ellentmondást kapunk. Világos, hogy ehhez elég belátni, hogy bármely &tex;\displaystyle k&xet; pozitív egész kitevőre

&tex;\displaystyle 0\le S_k=\sum_{j=1}^n (a_j^k-a_j^{k+1})\prod_{i\neq j}\frac{1-a_i}{a_j-a_i}=&xet;

&tex;\displaystyle =\left[\prod_{i=1}^n (1-a_i)\right]\cdot \sum_{j=1}^n \frac{a_j^k}{\prod_{i\neq j}(a_j-a_i)}=&xet;

&tex;\displaystyle =\prod_{i=1}^n (1-a_i)\cdot X^k[a_1,a_2,\dots,a_n].&xet;(3)

Például az osztott differenciák középértéktételéből, vagy a hivatalos megoldásbeli &tex;\displaystyle (2)&xet; azonosságból következik, hogy utóbbi mennyiség nemnegatív. Ez adja az ellentmondást.

A megoldás átgondolásával jól leolvasható az egyenlőség esete is (de végül is ezt a feladat nem kérte). Ha az infimum &tex;\displaystyle d&xet;, akkor &tex;\displaystyle (2)&xet;-ben egyenlőség is megengedhető, ám &tex;\displaystyle k\ge n\ge 2&xet; esetén &tex;\displaystyle S_k&xet; pozitív, így &tex;\displaystyle f(x)\neq x^n&xet;-re &tex;\displaystyle S&xet; is pozitív lesz. Vagyis &tex;\displaystyle n\ge 2&xet;-re csak &tex;\displaystyle f(x)=x^n&xet; lehet, &tex;\displaystyle n=1&xet;-re pedig triviális a feladat.

[939] Old boy2014-11-23 11:22:41

Kedves Róbert Gida!

Nagyon köszönöm a villámgyors választ és a világos megoldást! Én is k=5-re jutottam teljesen hasonló gondolatmenettel. A feladat általánosítására lehet, hogy még visszatérek; ha érdekel, nézd meg azt is. Most azonban gyorsan köszönetet akartam mondani!

Old boy

Előzmény: [938] Róbert Gida, 2014-11-23 09:48:19
[938] Róbert Gida2014-11-23 09:48:19

k=5 a megoldás: ugyanis k=4 (vagy kisebb) még nem elég, hiszen álljanak körbe az emberek és mindenki küldjön képeslapot az óramutató járása szerint következő k szomszédjának. Ekkor könnyen láthatóan nem lesz olyan pár, aki egymásnak küldött volna.

k=5 meg már elég, ugyanis ekkor &tex;\displaystyle 9*k=45&xet; képeslap megy ki összesen a 9 embertől, de &tex;\displaystyle k*(k-1)/2=9*8/2=36&xet; pár van, így skatulyaelv miatt van olyan pár, akik kölcsönösen üdvözlik egymást.

Előzmény: [937] Old boy, 2014-11-23 02:48:44
[937] Old boy2014-11-23 02:48:44

A B.4612. sz. "üdvözlőlapos" feladat (2014 március) megoldása még nem jelent meg online. A feladatot megoldottam, általánosítottam is - azt hiszem, jól. Mégis örülnék, ha - ellenőrzésképpen - valaki itt megírná a maga (lehetőleg 3 pontos) megoldását! Előre is köszönöm!

[936] Kovács 972 Márton2014-11-14 15:45:30

Ez nagyon szép megoldás, köszönöm, hogy felraktad!

Előzmény: [935] HoA, 2014-11-14 13:50:33
[935] HoA2014-11-14 13:50:33

B. 4636. Egy háromszög melyik belső pontjában maximális az oldalaktól mért távolságok szorzata?

Gondolom a megoldók zöme rájött, hogy ha a P pont távolsága az &tex;\displaystyle a&xet; oldalegyenestől &tex;\displaystyle \alpha \cdot m_a&xet; , a &tex;\displaystyle b&xet; oldalegyenestől &tex;\displaystyle \beta \cdot m_b&xet; , akkor a &tex;\displaystyle c&xet; oldalegyenestől &tex;\displaystyle (1 - \alpha -\beta ) \cdot m_c&xet; távolságra van, a szorzatban szereplő &tex;\displaystyle \alpha , \beta , (1 - \alpha -\beta)&xet; számok számtani közepe állandó, így mértani közepük és szorzatuk akkor a legnagyobb , ha &tex;\displaystyle \alpha = \beta = 1/3&xet; , vagyis a megoldás az S súlypont.

Gondolt-e valaki az alábbi, számolás nélküli, mértani megközelítésre?: Megmutatjuk, hogy a háromszög belsejének tetszőleges, S-től különböző P pontjához található olyan Q pont, melyben a vizsgált szorzat értéke nagyobb, mint P-ben. Ez persze így még nem elég. De ha a szorzatot, mint a háromszög &tex;\displaystyle t&xet; pontjaihoz rendelt F(t) függvényt tekintjük, és megállapítjuk, hogy az folytonos, a háromszöglemez határán 0, a háromszög belsejében pedig véges pozítív érték, akkor készen vagyunk. Válasszuk úgy a betűzést, hogy P ne illeszkedjék az &tex;\displaystyle s_a&xet; súlyvonalra. Húzzuk meg P-n át az &tex;\displaystyle a&xet; oldallal párhuzamos &tex;\displaystyle e&xet; egyenest. Ennek pontjai akkora távolságra vannak az &tex;\displaystyle a&xet; egyenestől, mint P. Azon pontok mértani helye, melyek &tex;\displaystyle b&xet; ill, &tex;\displaystyle c&xet; oldalegyenestől mért távolságainak szorzata állandó – esetünkben annyi, mint a P pontra – egy &tex;\displaystyle h&xet; hiperbola, a háromszög belsejének pontjaira &tex;\displaystyle h&xet; egyik ága, melynek aszimptotái a &tex;\displaystyle b&xet; és &tex;\displaystyle c&xet; oldalegyenesek és persze áthalad P-n. &tex;\displaystyle h&xet; pontjai közül a vizsgált szorzat arra a Q pontra a legnagyobb, amelyik legtávolabb van az &tex;\displaystyle a&xet; egyenestől, vagyis a hiperbola a-val párhuzamos &tex;\displaystyle f&xet; érintőjének érintési pontja. Mivel a hiperbola érintési pontja felezi az érintőnek az aszimptoták közti szakaszát, Q rajta van &tex;\displaystyle s_a&xet; -n, tehát különbözik P-től, így távolabb van az &tex;\displaystyle a&xet; egyenestól, mint P, tehát F(Q) > F(P) .

[934] w2014-11-11 18:40:42

Elég sokat próbálkoztam elemi módszerekkel, de nekem sem transzformációval (mozgatással), sem indukcióval (azzal különösen nem), sőt egyszerű komplex számozással sem jött ki. Igazán érdekelne, ha ezt elemi módon sikerült valakinek belátni (és nem is egy magasabb algebrai tétel beleerőltetésével).

Előzmény: [933] Kovács 972 Márton, 2014-11-11 17:04:40
[933] Kovács 972 Márton2014-11-11 17:04:40

Köszönöm szépen ezt is, de nekem továbbra is az a sejtésem, hogy ezt meg lehet oldani, valami szép, elemi úton is. :)

Pld.: tükrözések összességével, invariáns tulajdonság keresésével, esetleg valamiféle indukció, vagy akármi hasonló trükk segítségével.

Előzmény: [931] w, 2014-11-11 16:09:33
[932] Fálesz Mihály2014-11-11 16:39:19

Mondjuk a maximum-elvre hivatkozni sokkal "meredekebb", mint a Hadamard-egyenlőtlenség... ;-)

Szerencsére polinomokra a maximum-elv bizonyítása is sokkal egyszerűbb.

Előzmény: [931] w, 2014-11-11 16:09:33
[931] w2014-11-11 16:09:33

Az 1. részt hivatkozással el lehet intézni.

Előzmény: [930] Kovács 972 Márton, 2014-11-11 15:03:02

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]