Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: "ujjgyakorlatok"

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]  

Szeretnél hozzászólni? Jelentkezz be.
[790] Sinobi2013-04-08 23:21:15

Mit jelent az, hogy ekvivalensek egymással? Ha a valós számok axiómáit használhatom, akkor mindegyik állítás igaz, kész. Ha nem használhatom, akkor..?

Előzmény: [789] w, 2013-04-08 21:10:52
[789] w2013-04-08 21:10:52

Na, ez talán népszerűbb lesz. Tekintsük a következő egyenlőtlenségeket: AM-GM, Hölder, AM-QM, Titu-lemma, Cauchy.

a) Mutassuk meg, hogy utóbbi három ekvivalens egymással.

b) Igazoljuk, hogy utóbbi négy az elsőből következik.

c) Igaz-e, hogy mind az öt ekvivalens egymással?

[788] w2013-04-07 20:22:22

Nincs sok érdeklődő, úgyhogy elmondom: osszuk el 1012345678-at 1012345678-1-gyel. Ha "kiepszilonozzuk" az ezeknél megszokott módon, láthatóan igaz lesz az állítás (pl. 0,999...=1 esetén). Másképpen: a, 2a, ..., ma teljes maradékrendszer modulo m, ha (a,m)=1.

Előzmény: [787] w, 2013-04-01 23:59:28
[787] w2013-04-01 23:59:28

Ez kicsit nehéz lesz a témához képest, de idevaló.

Nevezzük periódusnak egy végtelen, szakaszos tizedes törben fellelhető legrövidebb szakaszt. Elérhető-e egy pontosan 12345678 hosszú periódus?

[786] Sinobi2013-03-30 17:33:13

Ez egyszerű. A Pitagorasz-tétel miatt azok a pontok, melyekből tB hoszú érintő húzható, a k O középpontjától \sqrt{r^2+tB^2} messze lesznek. Azok a pontok, amelyek A-tól tA+tB távolságra vannak, egy A középpontú tA+tB sugarú körön lesznek. A két kör két metszése lehet csak B, azaz csak két ilyen különböző B pont létezik (adott r,O,a,tA,tB esetén), de az olyan két pont, ahol AB érintő triviálisan jó tehát azok azok.

Előzmény: [785] HoA, 2013-03-30 13:17:02
[785] HoA2013-03-30 13:17:02

A k körön kívüli A ill. B pontokból a körhöz húzott érintő szakaszok hossza tA ill. tB . Igazoljuk, hogy ha AB=tA+tB, akkor ( az ábrával ellentétben ) AB érintő.

[784] w2012-12-24 13:31:34

Elegáns megközelítés. Más megoldás: 10-zel osztunk, majd AM-GM miatt triviális. Ha a változók szorzata 1, vagy összege 1, akkor AM-GM majdnem mindig beválik. Emiatt a feladatot rendezési tétellel is meg lehet oldani, illetve visszavezethető teljes négzetekre (itt talán az is kiszúrná a szemünket).

Előzmény: [783] HoA, 2012-12-24 09:55:21
[783] HoA2012-12-24 09:55:21

Az első négy tagot a+b+c+d négyzetéből származtatva meg kell szabadulnunk a hat darab kettősszorzattól. Egyszerűbb (a-b)2=a2+b2-2ab\ge0,a2+b2\ge2ab alapján kifejezésünket a nála kisebb vagy egyenlő 2ab+2cd+ab+ac+ad+bc+bd+cd -vel helyettesíteni és innen a te módszereddel 3(ab+cd)+(ac+bd)+(ad+bc) csoportosítással a zárójelekben kettőnél nem kisebb számok állnak. Így a relációs jel iránya sem kérdéses.

Előzmény: [781] Bertalan Balint, 2012-12-24 01:44:45
[782] Bertalan Balint2012-12-24 01:52:12

Persze a relacios jel iranya meg kerdeses. :)

Előzmény: [781] Bertalan Balint, 2012-12-24 01:44:45
[781] Bertalan Balint2012-12-24 01:44:45

A szamtani es mertani kozep kozti egyenlotlenseg alapjan a+b+c+d legalabb 4, negyzete legalabb 16. Mivel peldaul ab+cd legalabb 2 (cd=1/ab, ami pozitiv), az allitas konnyen lathatoan igaz.

Előzmény: [780] w, 2012-12-08 21:20:33
[780] w2012-12-08 21:20:33

Az a, b, c, d poz. valós számok szorzata 1. Igazoljuk:

a2+b2+c2+d2+ab+ac+ad+bc+bd+cd\ge10.

[779] valaki akit úgyis ismersz2012-11-14 17:18:47

Helyesbítek: (n!)^\frac1n\le\frac{1+2+3+...+n}n=\frac{n+1}2.

Előzmény: [778] valaki akit úgyis ismersz, 2012-11-13 21:34:49
[778] valaki akit úgyis ismersz2012-11-13 21:34:49

AM-GM egyenlőtlenség szerint (n!)^\frac1n\le\sum_{i=1}^ni=\frac{n(n+1)}2. Hatványraemeléssel adódik a bizonyítandó egyenlőtlenség.

[777] koma2012-10-13 17:12:00

ténylegesen elírtam,elnézést

[776] sakkmath2012-10-13 16:08:28

Szerintem a 2. feladatot elírtad.

Talán erre gondolhattál:

Igazoljuk, hogy n>1 esetén:

n! < \big(\frac{n+1}2)^n

Előzmény: [773] koma, 2012-10-13 10:48:04
[775] SmallPotato2012-10-13 15:03:50

A 2. állítás már n=3 esetére sem teljesül. Jól írtad be?

Előzmény: [773] koma, 2012-10-13 10:48:04
[774] Lapis Máté Sámuel2012-10-13 11:13:11

1,Igazoljuk, hogy x>1 esetén:

log2x+logx2\ge2

Miután megvannak indokolva a kikötések vezess be új alapot.

log_{x}2=\frac{log_{2}2}{log_{2}x}

log_{x}2=\frac{1}{log_{2}x}

log_{2}x+\frac{1}{log_{2}x}\ge2

Új ismeretlen a=log2x

a+\frac{1}{a}\ge2

Mivel x>1,egy pozitív szám és reciprokának összege nagyobb egyenlő kettő!

Előzmény: [773] koma, 2012-10-13 10:48:04
[773] koma2012-10-13 10:48:04

Köszönöm szépen a válaszokat! Az utóbbi időben találtam néhány egyenlőtlenséget, amiket nem tudtam megoldani, ha valaki tudna segíteni annak nagyon örülnék.

1,Igazoljuk, hogy x>1 esetén:

log2x+logx2\ge2

2,Igazoljuk, hogy n\ge2 esetén:

n!\le({\frac{n+1}{2}})^2

[772] polarka2012-10-05 17:00:59

Igen, tetszőleges C-re: A*B = (C-((C-A)+(C-B)))C + (C-A)(C-B)

Előzmény: [771] polarka, 2012-10-05 17:00:11
[771] polarka2012-10-05 17:00:11

Igen, tetszőleges C-re: A*B = C-[(C-A)+(C-B)]C + (C-A)(C-B)

Előzmény: [768] Hajba Károly, 2012-09-22 23:18:44
[770] Róbert Gida2012-10-01 20:46:55

11n+2+122n+1=112*11n+12*122n=121*11n+12*144n\equiv121*11n+12*11n=133*11n\equiv0mod 133, így osztható 133-mal.

Előzmény: [769] koma, 2012-10-01 18:50:09
[769] koma2012-10-01 18:50:09

Kongruenciák! segítségével bizonyítsuk be,hogy:

133 osztója 11n+2 + 122n+1

Minden segítséget köszönök előre!

[768] Hajba Károly2012-09-22 23:18:44

Igen.

S működik ez bármely C > [A, B] esetén is, csak ekkor a helyiértékekre nem jön ki ilyen szépen csak tízhatvány esetén.

A * B = ? . => . (A+B-C)*C + (C-A)*(C-B)

C-A . C-B . | . C-X = A+B-C

(C-A)+(C-B)= 2C-(A+B) => X

(C-A)*(C-B)

Előzmény: [767] polarka, 2012-09-22 22:35:55
[767] polarka2012-09-22 22:35:55

egy a számtalan fejszámolási trükkök közül. 100-nál kisebb számokra működik, de kiterjeszthető nagyobb számokra is.

Ugye a számolási eljárás a következőt állítja: (10a+b)*(10c+d)=(100-(100-(10a+b)+100-(10c+d)))*100+(100-(10a+b))*(100-(10c+d)) ahol a,b,c,d = 0;1;2;...;9

Amiből a zárójelek felbontása után belátható, h megegyeznek. Tehát az eljárás a megfelelő értelmezés mellett működik 2jegyű számokra. De olyan számoknál érdemes használni, amelyek közel vannak a 100-hoz.

Mondjuk sztem a szokásos módszerrel sem sokkal nehezebb számolni: 97*96=97*(100-4)=9700-4*(100-3)=9300+4*3=9312

Előzmény: [766] Hajba Károly, 2012-09-22 15:29:49
[766] Hajba Károly2012-09-22 15:29:49

Ez működik más számokkal is? S ha igen, miért?

:o)

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]