Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Nehezebb matematikai problémák

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]  

Szeretnél hozzászólni? Jelentkezz be.
[120] jonas2005-01-13 17:21:23

En nem ertem, miert van egyaltalan ilyen \Phi es \Psi fuggveny. De ha van, akkor termeszetesen polinomok, mert veges test folott minden fuggveny polinom.

Előzmény: [116] Gubbubu, 2005-01-13 11:44:05
[119] Gubbubu2005-01-13 17:18:07

Hopp! Valóban, lemaradt, hogy f:T->T függvény (egyébként) tetszőleges. a,b pedig természetesen T elemei. Így már van értelme?

Előzmény: [118] Lóczi Lajos, 2005-01-13 17:00:55
[118] Lóczi Lajos2005-01-13 17:00:55

Nem világos az egyes betűk jelentése, mi testelem, mi függvény, mi képez honnan hová, stb.

Előzmény: [116] Gubbubu, 2005-01-13 11:44:05
[117] rizs2005-01-13 13:53:45

22. feladat: 4 eseményes totó (3 lehetséges kimenetel 1, 2, x) esetén hány szelvény kell a biztos 3 találathoz?

[116] Gubbubu2005-01-13 11:44:05

21. feladat Adott egy véges T test. Legyen f(a)+f(b)=\Phi(f(a+b)) és f(a)f(b)=\Psi(f(ab)).

a). Igaz-e, hogy \Phi és \Psi polinomok! (attól tartok, igen, de kíváncsi vagyok, van-e rá valami elemi bizonyítás). Ha ez igaz, hogy néznek ki?

b). Mikor bijektívek ezek a leképezések? (mondjuk tudunk-e valami algebrai feltételt adni)

Megjegyzés: felőlem a két görög betűvel jelölt függvény "inverze" is vizsgálható (pontosabban, pl. a \Gamma(f(a)+f(b))=f(a+b) stb. -t teljesítő függvény), ha úgy könnyebb.

[115] Atosz2005-01-04 18:22:48

Sziasztok!

Először vagyok itt, az érd.mat.fel topikban feltettem [685]-ös hozzászólással két feladatot (137., 138.). Ha valaki tud segítsen! Köszönöm!

[114] Bubu2004-12-20 15:24:57

Hahó!

Ezt a példán valszám gyakon tűzte ki a tanár n=3-ra, és a megoldásom után azt mondta, hogy Ő még erről nem hallott ilyen formában. n=2-re régen (még mikor én is küldtem) 5 pontos B feladat volt. Sorry,de Texezni nem t'ok.

Feladat: Legyenek A(1), A(2), ..., A(n) tetszőleges események. Metszetük legyen A. Keressük meg a P(A)-P(A(1))*P(A(2))*...*P(A(n)) kifejezés legnagyobb alsó és legkisebb felső korlátját!

Ha valakinek megvan legyen szíves elküldeni nekem e-mailben a megoldását, mert kíváncsi vagyok, hogy egyezik-e az enyémmel. Majd azért igyekszem ide is rendszeresen ellátogatni.

Soxerencsét a megoldáshoz!

Bubu

[113] Kós Géza2004-11-12 08:29:11

Amennyire látom, 4 pontra mindig van.

Az illesztendő görbének 5 független paramétere van: a koordináta-rendszer origója (2), iránya, a görbe két paramétere (a,b). Az az 5 pont, amit mutattam, inkább olyasmi, mint amikor három pontra akarunk kört illeszteni, de a három pont véletlenül egy egyenesre esik.

Előzmény: [112] Strenner Balázs, 2004-11-11 16:47:57
[112] Strenner Balázs2004-11-11 16:47:57

Tényleg. Ez szép, köszönöm. De mi van 4 pontra?

Előzmény: [111] Kós Géza, 2004-11-11 11:48:11
[111] Kós Géza2004-11-11 11:48:11

Nem nehéz 5 olyan pontot találni, amire nem lehet szinuszgörbét illeszteni:

A(0,0), B(1,0), C(2,0), D(3,0), E(3,1).

Tételezzük fel, hogy egy szinuszgörbe átmegy az A,B,C pontokon. A görbét középpontosan tükrözve B-re, a tükörkép is átmegy A-n és C-n. Ha B nem a görbe tengelyén van, akkor a görbe és a tükörkép közös pontjai periodikusan helyezkednek el (lásd az ábrát), ezért az AC egyenesnek párhuzamosnak kell lenni a tengellyel. Ugyanez elmondható a B,C,D pontokra is. Ha B és C is a tengelyen van, akkor az ABCD egyenes maga a tengely. Tehát, az ABCD egyenes mindenképpen párhuzamos a tengellyel.

A DE egyenes merőleges a tengelyre, tehát legfeljebb egy pontja lehet a görbén.

Előzmény: [110] Strenner Balázs, 2004-11-10 14:11:56
[110] Strenner Balázs2004-11-10 14:11:56

A következő probléma valószínűleg elég nehéz, pár napja vetődött fel bennem, és gyanítom, hogy a megoldása meglehetősen bonyolult, feltéve ha van.

Hallottam egy feladatot, miszerint egy szinuszgörbét kell illeszteni 3 pontra. (A szinuszgörbét egy olyan függvény grafikonjaként értelmezem, ahol a koordináta-rendszer a síkban tetszőleges helyzetű, és f(x)=asin (bx) ahol a és b nem 0. Könnyen belátó, hogy van olyan szinuszgörbe, amelyik mindhárom ponton átmegy. Gondoltam, megnézem, mi van 4 pontra. Itt már csak addig jutottam, hogy négyzetre találtam szinuszt, általánosságban azonban nem jutottam semmire. Aztán az is felvetődött, hogy ha 4-re is igaz az állítás, akkor van-e olyan n, hogy n pontot elhelyezve a síkon ne létezzen olyan szinuszgörbe, amelyre mindegyik pont illeszkedik.

Akinek van ötlete, vagy valamit valamit hozzá tud szólni, tegye meg. Köszönöm

[109] Csimby2004-11-03 17:17:22

Köszi szépen a megoldást, örülök, hogy be lehetett fejezni!

Előzmény: [107] nadorp, 2004-11-03 16:50:43
[108] nadorp2004-11-03 16:57:49

Bocs, természetesen p\geq127 -et akartam írni.

Előzmény: [107] nadorp, 2004-11-03 16:50:43
[107] nadorp2004-11-03 16:50:43

Szia Csimby !

A megoldás teljesen jó és be is fejezhető. Legyen k=4m+3, ahol m\geq1, azaz k\geq127. Vizsgáljuk a számokat modulo 7. Mivel 24m+3-1=8.16m-1\equiv2m-1mod(7), ezért 7|4+23n+2-1 és 7|4.49+23n-1 miatt csak m=3n+1 jöhet szóba, azaz k=12n+7. Ekkor viszont

212n+7-1=128.212n-1\equiv(-2).1-1\equiv-3mod(13) miatt 13|4*4+212n+7-1 is teljesül, azaz nem lesz prímszám. Így a feladatnak csak a p=3,7 a megoldásai.

Előzmény: [105] Csimby, 2004-10-30 13:42:01
[106] Gubbubu2004-11-02 18:27:00

A "megváltozik" szót úgy értve, hogy az input invariáns sem lehet, hanem kifejezetten más a végén, mint kezdetben... Nem mintha azt várnám, hogy bárki is válaszol erre nekem, de fő a pontosság...

Előzmény: [102] Gubbubu, 2004-10-16 10:32:42
[105] Csimby2004-10-30 13:42:01

A.350. Adjuk meg az összes pozitív egészt, melyre a 4x2+p polinom a 0,1,...,p-1 helyeken prím értéket vesz fel.

p(x)=4x2+p

p(x)=4x2+p+(4px2-2p-1)-(4px2-2p-1)

p(x)=(p+1)(4x2-1)-(4px2-2p-1)

p(x)=(p+1)(2x-1)(2x+1)+(p+1)-4px2+p

p(x)=(p+1)(2x-1)(2x+1)+(p+1)+p(1-2x)(1+2x)

p csak prím lehet, ellenkező esetben x=0-ra p(x) összetett szám. p=2 nem jó, mert x=1-re p(x)=6, ami összetett. Tehát p páratlan, p+1 páros.

p(x)-et 3 tag összegére bontottuk fel melyek közül az 1. és a 3. osztható 2x+1-gyel. A 2. tag p+1, akkor oszthaó 2x+1-gyel, ha van páratlan osztója, hiszen 2x+1 az x=0,1,...p-1 értékeket veszi fel, vagyis minden páratlan értéket p-ig. Tehát ha p+1-nek van páratlan osztója, akkor van olyan x, hogy p+1 is osztható lesz 2x+1-gyel, tehát p(x) összetett lesz. Az nem jó nekünk amikor p+1-nek csak az 1, a páratlan osztólya illetve az, ha 2x+1=p(x), de ezt kizárhatjuk, hiszen 2x+1<p(x).

Hogyha p+1-nek nincsen 1-en kívül páratlan osztója, akkor p+1=2k, tehát p egy 2k-1 alakú prím, azaz Mersenne-prím. Ismert, hogy ekkor k is prím kell, hogy legyen. Ha k=2, akkor p=3, ez egy jó megoldás. A többi esetben k=4m+1 vagy pedig k=4m-1 alakú. Hogyha k=4m+1, akkor:

p=24m+1-1=2*(22)2m-1\equiv2*(-1)2m-1=1 (mod5)

Tehát x=1-re p(x) osztható lesz 5-tel, hacsak nem p(x)=5, akkor ez azt jelenti, hogy p(x) összetett (ha p(x)=5, az x=1, helyen, akkor p=1, ami nem prím, ez tehát nem jó).

Maradt az az eset amikor k=4m-1 és ez az ami miatt írtam, mert hogy innen nem tudok tovább menni (lehet, hogy zsákutca?). Hogyha valaki megoldotta másképpen, vagy innen tovább tud menni, az írja be, mert nagyon érdekelne.

Megjegyzés: p=7 is jó megoldás, ahol k=3.

[104] Kemény Legény2004-10-24 11:20:20

Kedves Bálint!Az ellenpéldád rendkivül meggyőző,és minden további nélkül el is fogadom,azonban ezuton egésziteném ki a megoldást azzal,hogy két kék szomszédos pont között 0 hosszuságu piros sorozatokat definiálunk....

Előzmény: [103] Ureczky Bálint, 2004-10-23 22:34:07
[103] Ureczky Bálint2004-10-23 22:34:07

Hát a 3mal való oszthatóság állandósága sajnos nem igaz... Pl:

Előzmény: [96] Kemény Legény, 2004-10-10 19:22:46
[102] Gubbubu2004-10-16 10:32:42

20. feladat Egy kis algoritmikus kombinatorika:

Van-e "éles" becslés adott n-elemű véges abc feletti k állapotú klasszikus (egyszalagos, egy I/O-fejes, jobbra/balra/helyben lépegető, determinisztikus) Turing-gépek számának felső határára?

Ezek közül hány Turing-gép olyan, ami csinál is valamit, azaz van olyab véges input, amelyre ráeresztve a gépet az megváltozik a számítási eljárás során (nem kell, hogy az eljárás szabályosan érjen véget, az úgy elég nehéz lenne!).

[101] Kós Géza2004-10-12 12:14:26

Várhatóan péntek körül, amikor már beérkeztek a vidéki dolgozatok, a megoldásokból megint csinálok egy web-oldalt.

Addig is gyűjthetjük a megoldásokat, mert én biztos nem ismerem az összeset. :-)

Az 1. feladatra tudtok szép elemi megoldást?

Előzmény: [95] Csimby, 2004-10-10 01:08:18
[100] Kós Géza2004-10-11 16:49:44

A feladat annak igazolása, hogy az f(x)ig(x)j alakú polinomok közül kiválasztható néhány, ami lineárisan összefüggő.

Legyen n olyan pozitív egész, ami f és g fokánál is nagyobb. (Azért kell ilyen furcsán fogalmazni, hogy a konstans polinomokból ne lehessen kellemetlenség.)

Tekintsük azokat az fi(x).gj(x) polinomokat, amikre i,j<2n. Ez össesen 4n2 darab polinom. Mindegyik foka legfeljebb 2(2n-1)(n-1)<4n2-1. A kiválasztott polinomok tehát többen vannak, mint az általuk kifeszített tér dimenziója...

Előzmény: [99] Sirpi, 2004-10-11 15:37:09
[99] Sirpi2004-10-11 15:37:09

19. feladat: Adott két valós együtthatós polinom: f(x) és g(x). Bizonyítsuk be, hogy ezekhez mindig létezik olyan h(y,z) kétváltozós, nem az azonosan nulla polinom, melyre h(f(x),g(x))\equiv0.

(Saját ötlet, úgy érzem, meg is oldottam, de a megoldásom nem túl szép és vannak benne picit ködös pontok is. Azért tűzöm ki, hátha valaki ad rá egy frappáns megoldást)

[98] Kemény Legény2004-10-10 20:07:32

A 2. feladatra n=2004+(1002!)2 jon ki,ugyanis n-2004 felbomlik 2004 kulonbozo egesz szorzatara \implies n-2004 legalabb (-1002)(-1001)..(-1)(1)..(1001)(1002).(Erre van is polinom, -(x-1002)...(x-1)(x+1)...(x+1002)+2004+(1002!)2),ez x=0-ra 2004,x=-1002,...,-1,1,...1002-re pedig eppen n).

Előzmény: [95] Csimby, 2004-10-10 01:08:18
[97] Csimby2004-10-10 19:50:37

Hú, de szép! Köszi.

[96] Kemény Legény2004-10-10 19:22:46

Keves Csimby!A 3. feladatnal a piros sorozatok hosszanak valtakozo elojelu osszegenek a harommal valo oszthatosaga nem valtozik egy lepes soran(ellenorizd le,ha nem hiszed).2 kekre ez 0 oszthato 3-mal,mig 2 pirosrara +-2 nem oszthato 3-mal.Igy nem elerheto. A megoldas nem sajat:Molnar Andristol(11.o.)szarmazik.

Előzmény: [95] Csimby, 2004-10-10 01:08:18

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]