Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Nehezebb matematikai problémák

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]  

Szeretnél hozzászólni? Jelentkezz be.
[222] Lóczi Lajos2005-11-28 13:43:22

Szép sejtés (én az "S értékével egy kicsit játszva" lépésben az internetes Inverse Symbolic Calculator-hoz szoktam folyamodni, ami a Sloane-adatbázis kiterjesztése valós számokra.)

Igazoljuk tehát Róbert Gida sejtését, miszerint a feladatbeli összeg értéke \frac{1}{\root 4 \of {5}}. (A bizonyítás ugyanúgy kell menjen, mint az "ujjgyakorlatok"-beli analóg feladat esetén, amit a Mathematica kiszámolt.)

Előzmény: [221] Róbert Gida, 2005-11-27 16:32:32
[221] Róbert Gida2005-11-27 16:32:32

Sejtés a 134. feladatra:

n=107-ig összegeztem a tagokat PARI-GP-ben , persze rekurziót használva a tagokra, hogy egy lépésben ne kelljen a faktoriálist kiszámolni, így T=0.6687025753463730983726573923 körülbelül. A maradék tagokra pedig a Stirling formula becslése szerint az n. tag nagyságrendileg: \frac 1{n^{\frac 32}}*\frac 1{5^{0.75}*\sqrt {8Pi}}. Így az integrálközelítő összegeket használva egy T-nél jobb becslést is kaphatunk a sorösszegre:

S=T+\frac 1{\sqrt {10^7}*5^{0.75}*\sqrt {2Pi}}=0.6687403049777897230799514734

Tehát ennyi jó közelítéssel a sorösszeg. S értékével egy kicsit játszva kiderül, hogy S hihetetlen közel van \frac 1{\sqrt {\sqrt 5}} értékéhez, a hiba tőle mindössze 10-12, így valószínűleg ennyi a sorösszeg.

[220] Róbert Gida2005-11-27 15:16:10

Pepin teszt szerint: legyen n>0. Az Fn=22n+1 prím pontosan akkor, ha 3^{\frac {F_n-1}2} modulo Fn az -1. Így ez a teszt 2n-1 darab négyzetreemelést és redukciót igényel modulo Fn.

A másik új teszt pedig 2n-2 darab ilyen műveletet igényel, hiszen nekünk itt igazából nem S2n-2 értéke kell, hanem annak modulo Fn vett értéke, így a rekurziót is vehetjük modulo Fn De ott még mindig van 2 kivonása, ami ha binárisan van ábrázolva a szám, akkor átlagosan csak konstans műveletbe kerül.

Így mindkét eljárás lényegében 2n darab négyzetreemelést és redukciót igényel modulo Fn, azaz egyforma gyorsak.

Sőt nagyságrendileg ugyanolyan gyors, mint a Lucas-Lehmer teszt, csak éppen a Mersenne számok jóval sűrűbben vannak, mint a Fermat számok és nem is valószínű, hogy létezne akár még csak egy új prím is a Fermat számok közt, ezért keresnek általában Mersenne prímet.

Még egy dolog a futásidőről: egy sejtés szerint nincs lényegesen gyorsabb prímalgoritmus annál, mint annak a futásideje ami megnézi egy számról log2n négyzetreemeléssel és redukcióval, hogy egy szám egy adott alapra nézve ( erős ) álprím-e. Az előbbiek mind ilyen gyorsak voltak, így nem valószínű, hogy lenne ezeknél gyorsabb algoritmus ezen számokra. Ezért volt számomra nagyon meglepő amikor azt olvastam TRex-től, hogy egy másik algoritmusa szerint ő 25%-kal gyorsabban tudja megcsinálni a Fermat számokra a prímtesztet!, de kiderült, hogy tévedett.

TRex-ről még valamit: hihetetlen egyébként miket meg nem sejt, amik általában ismert tételek a számelméletben:) De ez az eredmény valóban újnak tűnik, én sem láttam sehol hasonlót. Én tőle októberben olvastam ezt a sejtését szintén egy külföldi fórumon: http://mersenneforum.org.

Előzmény: [219] Lóczi Lajos, 2005-11-27 13:32:14
[219] Lóczi Lajos2005-11-27 13:32:14

És melyik teszt hatékonyabb a Fermat-számokra, a Pepin-féle exponenciális vagy a Reix-féle iteratív? (Úgy értem, melyiket igényel kevesebb számolást?)

T. Reix amúgy egy külföldi fórumon TRex néven tűzte ki ugyanezt a feladatot november elején. Lesz belőle közös cikk? Újnak tűnik az eredmény, nem?

Előzmény: [217] Róbert Gida, 2005-11-27 11:11:30
[218] Lóczi Lajos2005-11-27 13:26:51

134. feladat. Mennyi a

\sum _{k=0}^{\infty } \frac{(5 k)! }{k! (4 k+1)!}\left(\frac{4}{5 \sqrt{\sqrt{5}}}\right)^{4 k+1}

összeg értéke kifejezve olyan formában, amit még általános iskolában tanultunk?

[217] Róbert Gida2005-11-27 11:11:30

Valóban nem én vagyok Tony Reix. Ő egyébként egy francia programozó. Váltottunk olyan 6 emailt egymás között a témában, sejtésével kapcsolatban. Nemrégiben adtam rá egy bizonyítást, ami elemi és nem használ tételeket a Lucas sorozatokról. Az ő bizonyítása egyébként hibás, köszönhetően 6. tétel (8.4.7)-nek, mivel ott, hogy mikor van +-1 azt éppenséggel egy Legendre szimbólum adja meg.

Az a legmeglepőbb, hogy a Freud-Gyarmati Számelmélet könyvben a Mersenne számokra vonatkozó kritérium bizonyítását átírva ezt a tételt is meg lehet kapni! Ezt átírva valamivel több mint 2 oldal a bizonyítása néhány könnyen ellenőrizhető számolás kihagyásával. Részletesen olyan 4-5 oldal lenne.

Fermat számokra egyébként a Pepin teszt közismert, ami azért más mint ez a teszt. Éppen szerintem ezért érdekes, hogy a Mersenne és Fermat számokra most már van két hasonló prímteszt, aminek a bizonyítása is hasonló.

Kis segítség a kezdéshez az érdeklödőknek: itt most a Q[\sqrt {21}] gyűrűben kell dolgozni! Ebben a gyűrűben egyébként igaz a számelmélet alaptétele, de ezt nem kell a bizonyításhoz használni.

Előzmény: [216] Lóczi Lajos, 2005-11-27 02:39:20
[216] Lóczi Lajos2005-11-27 02:39:20

Mersenne-prímekre a kitűzötthöz kísértetiesen hasonló rekurzív kritérium ismert, l. http://mathworld.wolfram.com/Lucas-LehmerTest.html

Utána Google-kulcsszavak: Lucas-Lehmer, Pepin, egy kis nyomozás, és íme

http://tony.reix.free.fr/Mersenne/PrimalityTest2FermatNumbers.pdf

Feltehetőleg nem Te vagy Tony Reix, igaz ? :))

Előzmény: [215] Róbert Gida, 2005-11-26 22:25:41
[215] Róbert Gida2005-11-26 22:25:41

133. feladat

Legyen n\geq1, bizonyítsuk be ekkor, hogy Fn=22n+1 ( azaz az n-edik Fermat szám ) prím akkor és csak akkor, ha az S0=5 és Sk+1=Sk2-2 rekurzióval definiált sorozat esetén az S2n-2 osztható Fn-nel.

[214] Lóczi Lajos2005-11-21 20:23:20

Ha T és \omega között az a kapcsolat, amit írtál, akkor ez jön ki. (De ugyanezt az eredményt írtad az eredeti kérdésedben is, tehát nem kell meglepődni.)

Előzmény: [213] Wolf, 2005-11-21 14:54:18
[213] Wolf2005-11-21 14:54:18

Biztos ez jön ki (sk)-ra? (Órai példa...)

Ugye az Euler alakból csak a cosinusos együtthatókat vizsgálom, mivel (-1)\inRe?

\rm\bf{e^{-s\cdot\frac T4}=-1}

\rm\bf{e^{s\cdot\frac T4}=-1}

Így \bf s\cdot\frac T4=jk \pi, ebből sk=2jk\omega, ahol k=\pm1;\pm3;\pm5;...

Előzmény: [212] Lóczi Lajos, 2005-11-21 13:14:27
[212] Lóczi Lajos2005-11-21 13:14:27

A kérdésnek valójában semmi köze az integráltranszformációkhoz, azon múlik a dolog, hogy a komplex számok körében az ez= -1 egyenlet megoldásai a z = (2k+1)\pii alakú számok, ahol i a képzetes egység és k tetszőleges egész. (Ez pedig lényegében az Euler-formulán múlik, miszerint e^{i\phi}=\cos(\phi)+i\cdot \sin(\phi), ahol \phi tetszőleges (komplex vagy valós) szám.)

Előzmény: [211] Wolf, 2005-11-21 11:59:27
[211] Wolf2005-11-21 11:59:27

Üdv!!!

Szintén Laplace kérdésem van... Adott F(s) törtfv.-nél, ha pólus helyet keresek, pl.: exp(-s*(T/4))=-1 helyen pólus van, akkor ebből hogy jön ki az s*(T/4)=j*k*pi, ahol k=+-1,+-3,+-5,... Fourier-sor meghatározásánál vizsgáltuk, ahol T a gerjesztési jel periódus ideje.

U.I.:Az ilyen jellegű kérdéseket melyik "témában" tehetem fel???

[210] Wolf2005-11-05 18:12:23

Nagyon szépen köszönöm a segítségét... Tudnillik ezt a módszert villamosságtanban használjuk és sajnos nincs elég idő az adott módszerek megértéséhez csupán csak a használatához és ez ahhoz vezet,hogy a fiatal mérnökök az életben már nem is fogják használni, egyrészt nincs rá szükségük (munkahelyi feladatkör), másrészt meg se marad nekik a tanult anyag. Nem értem mi a célja a mérnökképzéseknek,ha nem az,hogy a tanult anyagokat rögzítsék a hallgatóságban és jólképzett mérnököket adjanak ki a kezükből. Mindenkinek még nekem is utána kell járnom bizonyos témákban ismereteket szerezni, különben nem fogunk semmit megérteni csupán "néhány órás" szemináriumokon.

Előzmény: [209] Lóczi Lajos, 2005-11-04 20:46:17
[209] Lóczi Lajos2005-11-04 20:46:17

Ezzel kapcsolatban a következők jutottak eszembe. A Fourier- és Laplace-transzformációkkal szoktunk az integráltranszformációk közül leggyakrabban találkozni. Ha a transzformálandó függvény a negatív számokon nem érdekes (pl. azonosan nulla), akkor jó a Laplace-transzformációt alkalmazni. Továbbá, ha a függvény a plusz végtelen felé haladva nem csökken elég gyorsan, akkor a Fourier-transzformációban szereplő integrál esetleg nem lesz konvergens. Ekkor is előnyös a Laplace-tr., amely tehát egyfajta súlyozott Fourier-tr.-ként fogható fel: a súlyfüggvény az exponenciális függv. Mivel ez gyorsan csökken, az integrált konvergenssé teheti, akár még exponenciálisan gyorsan növő f-ek esetén is. (Az a bizonyos s a súlyfüggvény kitevőjében a Laplace-transzformáció konvergenciafélsíkjának szélét határozza meg.)

A Laplace-tr. tipikus alkalmazásai közé tartozik bizonyos differenciálegyenletek megoldása. A diff. egyenletet transzformálva egy "algebrai" egyenletet kapunk. Ennek megoldását kell vissza-Laplace-transzformálni, hogy megkapjuk az eredeti diff. egyenlet megoldását. Nyilván ez utóbbi lépés a legnehezebb, ezen múlik a módszer sikere és alkalmazhatósága.

Előzmény: [208] Wolf, 2005-11-04 11:43:09
[208] Wolf2005-11-04 11:43:09

Üdvözletem!!!

Elnézést, gondolhattam volna... Tehát arra vagyok kiváncsi, ha az időfv.-em w körfrekvencia szerint változik, akkor a fv. Laplace-transzformáltja a komplex számsíkon ábrázolható.Ennek a transzformálásnak mi a jelentősége, hogy kell elképzelni? Mivel a sin(wt) L.Tr.-ja valós részű, és a cos(wt) L.tr.-ja képzetes részű, akkor ezek kombinációival (pl.:Fourier-sor) egy jelleggörbét kapok a kompl.sz.-on? Ezen vektorok jellemzéséből utaltam az e(-st) tagra, melyett mindig fel kell használni... Mit befolyásol ez a tag a transzformálás során, mi az "s"? Sajnos nincs kellő átlátásom az adott témáról, elnézést ha éppenséggel "hülyeséget" írtam. Tudom kicsit már fizika, de nagy szükségem lenne a segítségére, köszönöm!!!

Előzmény: [200] Lóczi Lajos, 2005-11-01 20:52:53
[207] Lóczi Lajos2005-11-03 22:17:18

A levezetés nekem sosem kellett, csak a formulákat használtam (többdimenziós esetben). Hallottam, hogy ezek a formulák szoros kapcsolatba hozhatók kombinatorikus fákkal és gráfokkal, tehát ilyen könyvekben is keresgélhetsz.

Előzmény: [206] Tibi, 2005-11-03 08:31:26
[206] Tibi2005-11-03 08:31:26

Keressgettem és találtam is valamit a levezetésről, de én másképp oldottam meg: teljes indukcióval. Csinálta más is?

[205] Tibi2005-11-03 08:12:56

Az ok, hogy a formulák nyelvfüggetlenek, de engem a képlet bizonyítása érdekelne...magyarul.Nem tudod, merre találhatnám meg?Egyáltalán benne van ez valamilyen tankönyvben?

Előzmény: [204] Lóczi Lajos, 2005-11-02 22:09:15
[204] Lóczi Lajos2005-11-02 22:09:15

Nem kerestem, de nem hinném, hogy lenne. (Különben is, a formulák nyelvfüggetlenek.:)

Előzmény: [203] Tibi, 2005-11-02 21:58:25
[203] Tibi2005-11-02 21:58:25

Magyar nyelvű oldalt nem tudsz róla?

Előzmény: [202] Lóczi Lajos, 2005-11-02 21:12:55
[202] Lóczi Lajos2005-11-02 21:12:55

Ezeket Faa Di Bruno-féle formuláknak hívják, l. pl. a

http://mathworld.wolfram.com/FaadiBrunosFormula.html

címen.

Előzmény: [201] Tibi, 2005-11-02 21:03:20
[201] Tibi2005-11-02 21:03:20

Sziasztok!

Lehet, hogy most butaságot fogok kérdezni, de tud valaki képletet az összetett függvények magasabbrendű deriváltjainak előállítására? Én egy könyvben sem találok ilyet. Köszönöm a választ!

[200] Lóczi Lajos2005-11-01 20:52:53

Persze az integrálban nyilván f-et akartál írni F helyett. Hogyhogy mit jelent az exponenciális tag? Az exponenciális függvényt.

Előzmény: [198] Wolf, 2005-11-01 20:39:02
[199] Lóczi Lajos2005-11-01 20:50:38

http://mathworld.wolfram.com/LaplaceTransform.html

igaz, hogy angol, de a képleteket lehet érteni. Néhány függvény Laplace-transzformáltja benne van. (Esetleg konkrétabb kérdést is megfogalmazhatsz itt, miután elolvastad és megpróbálunk válaszolni rá.)

Előzmény: [198] Wolf, 2005-11-01 20:39:02
[198] Wolf2005-11-01 20:39:02

Üdvözletem!!!

Szeretném megkérdezni, hogy a Laplace-transzformáció tulajdonképpen miről szól és mit jelent az F(s)=integral[F(t)e(-st)1(t)dt] alakból az exponenciális tag, ahol 1(t) az egységugrás és 0-infinity intervallumban vizsgáljuk? Esetleg hol tudok ennek utánanézni(magyar leírás)?

U.i.: Bocs, hogy így adtam meg... Köszönöm

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]