Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: GEOMETRIA

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]  

Szeretnél hozzászólni? Jelentkezz be.
[917] HoA2007-10-25 19:19:39

A KöMaL régebbi olvasói számára ismert, hogy az ilyen feladatok megoldásához, ahol a \Delta-ek szögei 10o egész számú többszörösei, jól használható a szabályos 18-szög oldalaiból, átlóiból és körülírt K köréből álló H18 hálózat. Ha ívhossz egységnek K két szomszédos csúcs közötti ívét vesszük, n egységnyi ívhez n.10o kerületi és n.20o középponti szög tartozik.

Legyenek H18 csúcsai P1,.., P18, K középpontja O, sugara R. Húzzuk be a P1P6, P2P9 és P6P9 átlókat. Legyen A=P6,C=P9 , B pedig P1P6 és P2P9 metszéspontja. Ekkor ABC a feladatban szereplő \Delta, hiszen P1P6P9\angle=100o és P2P9P6\angle=40o.

OP6P9 R oldalú szabályos \Delta. Legyen a C középpontú R sugarú kör és a BC szakasz metszéspontja E. Ekkor BE a feladatban szereplő oldalhossz különbség. OCE egyenlőszárú \Delta csúcsszöge 60o-40o=20o, COE\angle=80o , E rajta van az OP5 sugáron. De akkor E a P2P9 átló e sugárra vett tükörképén, P1P8 -on is rajta van. A BP1E\Delta -ben BP1E\angle=P6P1P8\angle=20o, a B-nél lévő külső szög 40o, P1BE\Delta egyenlőszárú, így P1 feladatunk D pontja. ADC\angle=P6P1P9\angle=30o.

Előzmény: [910] Cckek, 2007-10-21 07:31:36
[916] Draskóczy Gergely2007-10-24 22:54:32

Valóban. Köszönöm a segítséget.

Üdvözlettel Draskóczy Gergely

[915] BohnerGéza2007-10-24 17:30:32
Előzmény: [914] Draskóczy Gergely, 2007-10-24 16:30:12
[914] Draskóczy Gergely2007-10-24 16:30:12

Munkám során merült föl az alábbi probléma:

adott A pont, K kör, t egyenes

szerkesszünk geometriai úton olyan kört (2 is van) mely átmegy A ponton, középpontja t egyenesen van, érinti a K kört

Tud ebben valaki segíteni?

Gergő

[913] BohnerGéza2007-10-24 03:37:14
Előzmény: [910] Cckek, 2007-10-21 07:31:36
[985] BohnerGéza2007-10-22 21:44:51

Tisztán szerkesztő megoldás:

Előzmény: [873] bohmajster, 2007-10-09 22:58:15
[912] BohnerGéza2007-10-22 20:56:25
Előzmény: [911] BohnerGéza, 2007-10-22 04:18:31
[911] BohnerGéza2007-10-22 04:18:31
[910] Cckek2007-10-21 07:31:36

Az ABC háromszögben mA=100o,mB=40o,mC=40o. Az AB oldalt meghosszabbítjuk BD=BC-AB-vel. Határozzuk meg az ADC szög mértékét.

[909] farkasb2007-10-16 21:09:35

Ezt a hozzászólást és levezetést is köszönöm!

[908] BohnerGéza2007-10-16 19:20:29

A [895] feladatára. (az ábrán A és B felcserélve)

Előzmény: [903] HoA, 2007-10-16 15:23:06
[907] farkasb2007-10-16 18:47:41

Köszönöm szépen!!!!

Előzmény: [906] HoA, 2007-10-16 18:08:17
[906] HoA2007-10-16 18:08:17

Legyen \vec{BA} = {\bf a} , \vec{BC} = {\bf c} Ekkor az ABC sík normális egységvektora {\bf n}_0 = \frac{{\bf a}\times {\bf c}}{|{\bf a}\times {\bf c}|} és D1,2=B\pm10.n0.

Az ABC síkban BA-ra merőleges egységvektor {\bf n}_1 = \frac{{\bf a}\times {\bf n}_0 }{|{\bf a}|} - hiszen a és n0 merőlegesek és n0 egységnyi. Így E1,2=B\pm10.n1.

Előzmény: [902] farkasb, 2007-10-16 15:13:47
[905] farkasb2007-10-16 17:07:11

Oh, de béna vagyok. Igen az ábrán A és B fel van cserélve

Előzmény: [903] HoA, 2007-10-16 15:23:06
[904] HoA2007-10-16 16:34:08

Legyen adott a paralellogramma az a, b, \alpha adatokkal. A szerkesztendő X ill. Y pontok [885] szerint. A Ka Apolloniusz-kör átmérője d=b/cos\alpha és ra=d/2 sugara szintén adottnak tekinthető. Érintse az AB-vel párhuzamos e egyenes Ka-t C2-ben. Ka minden pontjára, így C2-re is igaz, hogy az AC2B\angle felezője AB-t Y-ban metszi. Legyen ABC2\Delta körülírt K körének sugara R, középpontja O2. Tudjuk, hogy a belső szögfelező a szemközti oldal felező merőlegesét a körülírt körön metszi. Legyen C2Y és K metszéspontja Q. QC2O2\Delta egyenlőszárú, mert C2O2=QO2=R. C2QO2\angle=OC2Y\angle=45 fok, tehát QO2C2\angle=90 fok, ami azt jelenti, hogy O2 e-n van.

Innen az alábbi szerkesztés adódik: Az a hosszúságú AB szakasszal párhuzamosan, tőle ra távolságra vegyük fel az e egyenest. AB f felező merőlegesének és e-nek a metszéspontja O2. Az O2 középpontú, R=O2A sugarú K kör és e (egyik) metszéspontja C2, K és f metszéspontja ( e egyenes AB-t tartalmazó oldalán ) Q. C2Q kimetszi AB-ből Y-t.

Előzmény: [890] HoA, 2007-10-11 18:08:18
[903] HoA2007-10-16 15:23:06

És az ábrán A és B felcserélendő?

Előzmény: [902] farkasb, 2007-10-16 15:13:47
[902] farkasb2007-10-16 15:13:47

Megpróbálom magyarul :)

Adott ABC pont xyz koordinátákkal. Keresett 4 db pont. -Az első kettő (D1, D2), amelyik az BA szakaszra merőleges, B-től mért távolsága +10, -10 egység, és a BD1, BD2 merőleges az ABC síkra. A másik kettő (E1, E2)pedig ugyancsak merőleges a BA szakaszra, de az ABC síkon van, és B-től mért távolsága 10 e. Itt egy szemléltető ábra is. Előre is köszönet!

[901] HoA2007-10-16 14:19:52

Első kérdés : (ld. BohnerGézáé) Az ABC síkra merőleges vetítésre gondolsz?

Második kérdés: AZ ABC síkban fekvő, B-nél derékszögű ABC* \Delta C* csúcsát keresed, ahol BC* = 10 egység?

Előzmény: [899] farkasb, 2007-10-16 12:06:35
[900] BohnerGéza2007-10-16 14:12:04

Nem érthető (számomra) a feladat! Azt a részt, hogy egy pont legyen merőleges egy szakaszra, azt valószínűleg más sem érti.

Az elején merőleges vetítés van?

Fogalmazd meg jól a feladatot, talán tudunk segíteni.

Előzmény: [899] farkasb, 2007-10-16 12:06:35
[899] farkasb2007-10-16 12:06:35

Kedves Fórumozók!

Ilyen nehezet kérdeztem (nem hinném), vagy túl egyszerű? Megköszönném, ha valaki tudna segíteni.

[898] farkasb2007-10-14 23:16:22

Egy újabb, elvileg egyszerű kérdésem lenne. Adott A B C pont a térben. -Hogyan határozhatom meg azt a pontot(pontokat), mely az ABC síkra vetítve a vetítősugár a B ponton menne át, és B ponttól 10 egységnyire van. -továbbá szükség lenne arra a pontra (pontokra), amelyik AB szakaszra merőleges, és a ABC síkon helyezkedik el, és B pontból indul, és 10 egységnyire van tőle. Előre is köszönet!

[897] Hajba Károly2007-10-13 02:03:17

Átsiklottam azon, hogy BE az egység. Így kijött.

Előzmény: [896] Hajba Károly, 2007-10-13 01:45:28
[896] Hajba Károly2007-10-13 01:45:28

Ezzel a szerkesztéssel valami gond lehet, mert nekem nem jött ki. Én AE szakaszfelezőjébe raktam L-t, de ez lényegtelen, mert AL lesz az egység.

Előzmény: [882] BohnerGéza, 2007-10-10 23:57:14
[895] Hajba Károly2007-10-13 01:03:02

Amilyen arányban növelem a négyzet kerületét, olyan arányban nő az oldalhossza is. Így elég csak az egyik oldalhosszat vizsgálni. Megnövelem 4 méterrel, de ez egyben azt is jelenti, hogy a háromszorosára nőt. Ha valamit háromszorosára növelek, az azt jelenti, hogy még kétszer hozzáadom önmagához (1+2=3). Azaz a 4 méter az eredeti hossz kétszerese, így az eredeti hossz a 4 méter fele, azaz 2 méter.

Előzmény: [894] Emilio, 2007-10-12 23:42:25
[894] Emilio2007-10-12 23:42:25

Ha egy négyzet olkdalhosszát4m -rel növeljük,kerülete háromszorosára nő.mekkora az eredeti négyzet oldalhossza?

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]