Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: GEOMETRIA

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]  

Szeretnél hozzászólni? Jelentkezz be.
[988] tolgyesik2008-01-25 11:52:31

Kedves Fórumozók!

Két régi feladatról olvastam a fórumon, és felmerült bennem a kérdés, hogy ez a két állítás mégsem triviális?

7. feladat: Igaz-e, hogy a (nem elfajuló) háromszög beírt köre a legnagyobb sugarú kör, melyet a háromszöglemez tartalmaz?

8. feladat: Igaz-e, hogy a (nem elfajuló) háromszög köré írt kör a legkisebb sugarú kör, mely tartalmazza a háromszöglemezt?

[987] Süni1312008-01-23 20:48:01

Kedves Fórumozók!

Egyező átmérőjű körök középpontjai egy egyenesen, egymástól egyenlő távolságra helyezkednek el. Hogyan tudnám meghatározni egy másik egyenesnek az előzővel bezárt minimális szögeit, ha a feltétel a következő:

az egyenes által kimetszett húrhosszúságok összege nem haladhatja meg az 1, 2,...,n körátmérőt, az egyenesnek az adott szögek alatti bárhová történő eltolása mellett.

A segítséget előre is köszönöm,

Üdv: Süni131

[986] HoA2008-01-21 14:03:33

Konkrét irodalmat nem ismerek, de mivel eddig senki sem reagált, leírom az ötleteimet. Szerintem a feladatot a regressziós egyenes mintájára lehet kezelni. Ott adva van n db pont - (xi,yi) koordinátapár - melyek nem pontosan egy egyenesre illeszkednek és a feladat a pontokra legjobban illeszkedő y = ax + b egyenes megadása. Mint tudjuk, ha az eltérés mértékének a \sum {\Delta y^2} -t vesszük, ahol \Deltayaz egyenes xi -beli y koordinátájának és yi -nek a különbsége, akkor az eltérés a ill b szerinti deriváltját 0-nak véve az egyenes a ás b paramétereire elsőfokú egyenletrendszert kapunk.

Egyszerűség kedvéért vegyünk először egy síkbeli példát 3 ponttal. Legyenek adva az A,B,C pontok, valamint az A*, B*, C* pontok koordinátái. Feltesszük, hogy az ABC és A*B*C* háromszögek nagyjából hasonlóak és keressük azt a transzformációt, mely ABC-t az A*B*C*-t jól közelítő A'B'C'-be viszi át. Ha AB és A'B' különböző hosszúak és nem párhuzamosak, ez egy nyújtva forgatás. Ha alakzatainkat a komplex számsíkon ábrázoljuk, a nyújtva forgatásnak egy z'=z0+wz transzformáció felel meg, - ld. Pl. Reimann István:Geometria és határterületei - és itt is az a feladat, hogy határozzuk meg a z0 és w számokat úgy, hogy az A,B,C pontok képei, A'B'C' a "legközelebb" legyenek az A* B* C* pontokhoz. A hiba mértékének talán itt is tekinthetjük az A'A* ... távolságok négyzetösszegét. Azt persze nem mondom, hogy z0-ra és w-re itt is elsőfokú egyenletrendszert kapunk, de ha máshogy nem, közelítő módszerekkel a feladat megoldható.

Térbeli transzformációnál még bonyolultabb a helyzet, de ott is megtalálható az a transzformáció, mely két hasonló alakzat egyikét a másikba átviszi (tenzor?) és ott is felírható a megadott A*, B* , ... és a transzformáció által létrehozott A', B', ... pontok távolságának négyzetösszege, illetve ennek az összegnek a transzformációs objektum paramétereitől való függése. Utána már csak néhány deriválás és egyenletrendszer megoldás van hátra..

Előzmény: [983] farkasb, 2008-01-08 19:34:30
[983] farkasb2008-01-08 19:34:30

Tisztelt Fórumozók!

Nem egy konkrét feladatot, kérdezek, hanem csak azt, hogy ismer-e valaki olyan segédletet, anyagot, módszert, ami alapján el tudnék készíteni egy térbeli transzformációt, hogy: - adott egy térbeli alakzat elméleti alakjának koordinátái egy globális rendszerben - adott ugyanennek az alakzatnak a koordinátái egy lokális koordinátarendszerben, és a pontjai kis mértékben eltérnek az elméleti alakzattól - és ezt a lokális rednszert szeretném a globálisba transzformálni közös pontok felhasználásával úgy, hogy közben lehessen látni az ellentmondásokat, eltéréseket, hibákat, és ki lehessen venni a transzformációs paraméterek számításából azokat a pontokat, amik nagy mértékben eltérnek. Előre is köszönnettel: farkasb

[982] BohnerGéza2008-01-06 13:56:35

Kettővel ezelőtti hozzászólásomban E-t és F-et végig felcseréltem. Elnézést!

Előzmény: [984] BohnerGéza, 2008-01-06 02:15:02
[981] BohnerGéza2008-01-06 02:29:39

Érdemes tudni, hogy egy AB szakasz látókörének két íve nem teljesen egyenértékű. Ha az egyikről AB fí szögben látszik, akkor a másikról -fí-ben.

Tekintsük HoA [978] ábráját! Ott lényeges a feladat szempontjából, hogy F-ből DA és CB ugyanolyan irányítású egyforma szögben látszik, ez a DEA(=CEB) szöggel egyenlő.

Előzmény: [979] HoA, 2008-01-04 15:42:37
[984] BohnerGéza2008-01-06 02:15:02

Köszönöm HoA!

A 129. feladat kitűzésekor valóban arra gondoltam, ha minden olyan ABCD négyszögre igaz, melyben AB nem egyenlő CD-vel, azaz valódi hasonlósággal (körüljárástartó) kaphatjuk AB-ből CD-t, akkor E a megfelelő forgatva nyújtásnsak a kp-ja, tehát a fixpontja is.

Ehhez minden lehetőségre meg kell mutatni, hogy E mindig a körök AFD ill. BFC ívén van. (Pl. akkor is, ha F az AB szakaszon van. )

Még azzal is, kell kezdeni valamit, ha a két kör érinti egymást - F-ben.

Sőt Az AB párhuzamos CD-t is vizsgálni kell. Mindezt a fórumon pontosan leírni nem érdemes - a következő hozzászólásban egy dologról még írok-, de:

Ha mindent megmutattunk, akkor bebizonyítottuk, hogy minden valódi hasonlóságnak van fixpontja. A feladat - a speciális eseteket kivéve - lehetőséget mutat a fixpont szerkesztésére.

Előzmény: [977] HoA, 2008-01-04 10:43:57
[980] Bubóka2008-01-04 18:36:09

Igen, ezt így tudtam én is, de nem ez volt a feladat, amit nem tudtam. De azért köszi. Hidd el a másik is lehetséges, hisz az egyetemen kérik. De ha megtudom, közre adom!!

Előzmény: [979] HoA, 2008-01-04 15:42:37
[979] HoA2008-01-04 15:42:37

Na látod, ez az, amiről eddig szó sem volt: adott a szakasz felezőponja is. Egy megoldás: P az AS egyenes szabadon választott pontja, PN és SB metszéspontja Q, AQ és PB metszéspontja R, SR a keresett egyenes.

Hogy "adott pontból adott pontra állítson merőlegest" azt meghagyom neked.

Előzmény: [978] Bubóka, 2008-01-04 13:46:22
[978] Bubóka2008-01-04 13:46:22

Tisztelt Fórumozók! Látom galibát okoztam, bár nem állt szándékomban. A feladatom amit nem tudok megoldani, az az volt és nem több, hogy adott pontból adott pontra állítson merőlegest. sajnos nincs itt semmiféle körkp és egyebek. Eljutottunk a párhuzamos szerkeszthetősége vonalzóval vitájához, amit konkrétan nem fejtettem ki, mert nem ez volt a feladatom, pusztán reagáltam Jónásnak arra, hogy lehetséges. De most megteszem. A feladat: adott egy AB szakasz, annak N felező pontja és S pont mely nem illeszkedik a szakaszra. Húzzon S-en át párhuzamost az AB szakasszal. Mivel a (csak)vonalzós szerkesztésekhez 4 adott pontra van szükség így egy 4. pontot tetszőlegesen veszünk föl (az A és S pontot összekötő egyenesen). HA több időm lesz megpróbálom itt megszerkeszteni de legalábbis leírni a menetét, de épp geo. vizsgára készülök.

[977] HoA2008-01-04 10:43:57

Az ábra szerinti elrendezésben az ABF és CDF háromszögek B-nél ill. C-nél lévő szögei (piros) a k2 körben, A-nál ill. D-nél lévő külső szögei (zőld) a k1 körben az EF húrhoz tartozó kerületi szögek. Úgy vélem, BohnerGéza nem a nehézsége miatt adta fel ezt a feladatot, hanem valamilyen érdekes észrevétele van - talán a forgatva nyújtással vagy a négy háromszög tételével kapcsolatban?

Előzmény: [966] BohnerGéza, 2008-01-02 22:51:56
[976] HoA2008-01-04 10:28:35

Én meg úgy gondolom, hogy egy geometria fórumon a szerkesztési feladatokat szabatosan illik megfogalmazni. Mi adott és mit kell szerkeszteni? Ha például kiderül, hogy az egyenesen és ponton kívül még egy kör meg a középpontja is adott, akár merőlegest is szerkeszthetsz az adott ponból az adott egyenesre csak vonalzóval.

Előzmény: [971] Bubóka, 2008-01-04 08:23:54
[975] rizsesz2008-01-04 10:27:45

Elnézést, legközelebb nem csak az egy hozzászólást nézem meg. :) Ennek így valóban előfeltétele egy és más. Bubókának drukkolok a vonalzóval szerkesztéshez!

Előzmény: [974] jonas, 2008-01-04 09:29:08
[974] jonas2008-01-04 09:29:08

Igen, de ott meg van adva egy párhuzamos, és egy másikat kell szerkeszteni. Azt tényleg meg lehet csinálni.

Adott a két párhuzamos fekete egyenes, és a fekete pont. Meghúzod tetszőlegesen a két piros egyenest, az egyiket a fekete ponton keresztül. Utána meghúzod a három narancssárga egyenest a megfelelő metszéspontokat összekötve, utána a zöld egyenest, majd a kéket, végül a rózsaszínt. A rózsaszín párhuzamos lesz a két feketével.

(Nem vagyok benne biztos, hogy ez a legegyszerűbb szerkesztés, lehet, hogy egy egyenest meg lehet spórolni.)

Ha viszont nincs másik párhuzamos adva, csak egy fekete egyenes és egy pont, akkor csak egyenes vonalzóval szerintem nem lehet megszerkeszteni a rózsaszín párhuzamost. A 969. hozzászólást egyszerűen nem gondoltam át.

Előzmény: [972] rizsesz, 2008-01-04 08:57:56
[973] nadorp2008-01-04 09:20:01

Az a feladat is így kezdődik: "Adott egy trapéz,...", azaz nem csak egy egyenes és egy pont adott síkon,hanem egy párhuzamos egyenespár és egy pont. Jonas épp azt kérdezte [969], hogy Bubóka eredeti feladatában nincs-e más is megadva a ponton és az egyenesen kívül.

Előzmény: [972] rizsesz, 2008-01-04 08:57:56
[972] rizsesz2008-01-04 08:57:56

Jaja, bár nincsen ott a megoldásnál, de a 2001/2002 február B. 3527. is ezen alapult.

Előzmény: [971] Bubóka, 2008-01-04 08:23:54
[971] Bubóka2008-01-04 08:23:54

Elnézést lehet kérni, de lehet párhuzamost húzni vonalzóval!!!!!! Adott ponton át adott egyenesre, "trapéz feladat" segítségével! Én úgy gondolom, hogy azért mert valaki valamit nem tud az nem egyenlő azzal, hogy olyan nem létezik.

Nem tévedés volt a merőleges. Biztos hogy lehet, csak én nem jövök rá egyenlőre a menetére.

Előzmény: [970] jonas, 2008-01-03 22:17:18
[970] jonas2008-01-03 22:17:18

Párhuzamost csak vonalzóval szintén nem lehet. Elnézést.

Előzmény: [969] S.Ákos, 2008-01-03 21:21:58
[969] S.Ákos2008-01-03 21:21:58

Így hirtelen nem látom, hogy párhuzamost hogy lehetne csak vonalzóval szerkeszteni. Felvilágosítanál?

Bubóka: Az 5-szög szerkesztése meg abból következik, hogy az egységnyi sugarú körbe írt 10szög oldala \frac{\sqrt5-1}2. Ez pithagorasz-tétel segítségével meg könnyen szerkeszthető.

Előzmény: [968] jonas, 2008-01-03 19:31:17
[968] jonas2008-01-03 19:31:17

"Hogy kell pontból egyenesre merőlegest bocsátani CSAK vonalzóval?"

Nem párhuzamosra gondolsz véletlenül? Ha nem, akkor nincs valami más is adva? Mert így lehetetlen.

Előzmény: [967] Bubóka, 2008-01-03 18:22:34
[967] Bubóka2008-01-03 18:22:34

Üdv Mindenkinek! Segítségeteket szeretném kérni. Hogy kell pontból egyenesre merőlegest bocsátani CSAK vonalzóval? HA a menetét valaki leírná, nagyon megköszönném. Ja! És szabályos ötszöget szerkeszteni az aranymetszéssel...?

[966] BohnerGéza2008-01-02 22:51:56

129. feladat: Az ABCD négyszög nem trapéz. AB és CD az E-ben metszik egymást. Az ADE és BCE körülírt köre E-n kívül F-ben találkoznak. Bizonyítandó, hogy ABF és CDF hasonlóak!

[965] S.Ákos2007-12-31 15:13:16

Akkor az elemi megoldás (mik jutnak az ember eszébe hajnali fél három táján): Legyen BD felezőponja E. ekkor DEC\angle=2\alpha, mivel a E a DCB háromszögben a körülírható kör kp-a. De így CDE\angle=CAD\angle=2\alpha, így DCA egyenlőszárú, így \frac{AC}{DB}=\frac12 Legalábbis sztem ez bizonyos esetekben igaz. Ha DCA háromszögben az említett szögek külső szögek, akkor is igaz, hogy DCA egyenlőszárú.

Előzmény: [964] BohnerGéza, 2007-12-31 14:05:01
[964] BohnerGéza2007-12-31 14:05:01

A megkötés valóban nem kell, a kitűzők talán a 9-eseknek szóló feladatot "nehezítették", lehessen általánosítani. A korosztálytól nem feltétlenül trigonometriát használó megoldást vártak. Az elemi tetszett nekem jobban.

Előzmény: [963] SmallPotato, 2007-12-30 19:30:47
[963] SmallPotato2007-12-30 19:30:47

A megoldás szerintem is helyes. (Pontosabban: nekem is ez jött ki. :-) )

Két hozzáfűznivalóm lenne azért:

A feladat kifejezetten hegyesszögű háromszöget ír; Te nem ilyet rajzoltál, bár elsőre nekem sem tűnik lényeginek a megkötés. (Majd lehet, hogy engem is helyreigazítanak. :-D)

A másik: a jövőre nézve szerencsésebb lenne (mivel megszokott), ha a háromszög csúcsait az óramutató járásával ellentétes sorrendben betűznéd, és a szögeket ugyanezen sorrendben osztanád ki (az A csúcsban \alpha, a B csúcsban \beta stb.)

Azért merem ezt kérni, mert emlékszem első táblai geometria-szereplésemre a gimiből: nem szokványosan betűztem a háromszöget, és a padsorokból tömény húúúúúú jött ... :-)))

Előzmény: [962] S.Ákos, 2007-12-30 12:06:40

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]