Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: GEOMETRIA

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]  

Szeretnél hozzászólni? Jelentkezz be.
[1006] Gyöngyő2008-04-14 22:45:39

Sziasztok!

Tudnátok segíteni a következő feladatnál:

Bizonyítsa be,hogy a tetraéder lapszögfelező síkja olyan arányban osztja az átellenes élet,amely egyenlő annak a két lapnak a területarányával,amelyek szögét felezi!

Köszike:

Zsolt

[1005] BohnerGéza2008-04-13 20:22:04

Legyen a 131. feladatban H ill. J az A'B'-nek B'-höz ill. C'D'-nek D'-höz közelebbi harmadolópontja.

Igazoljuk, hogy H, B, D és J egy egyenesen vannak!

Adjuk meg a HB, a BD és a DJ szakaszok hosszának arányát!

Előzmény: [1004] HoA, 2008-04-03 11:20:44
[1004] HoA2008-04-03 11:20:44

A 131. feladat megoldása:

a ) I.) A csúcspontok helyvektoraira - AB' felezőpontja B - felírható: B = \frac{A + B'}2 B'=2.B-A , hasonlóan C'=2.C-B , D'=2.D-C és A'=2.A-D . Az egyenletrendszert pl. D-re megoldva kapjuk:

D = \frac1{15} \cdot (8D' + 4C' + 2B' + A') Ha koordinátarendszerünk kezdőpontjának D'-t választjuk, akkor \vec{D'} = \vec0 , A' = \vec{D'A'}, B' = \vec{D'B'} , C' = \vec{D'C'} ,

\vec{D'D} = \frac1{15} \cdot ( 4 \vec{D'C'} + 2\vec{D'B'} + \vec{D'A'}) , ami A'B'C'D' négyszöget ismerve könnyen szerkeszthető.

II.) Szemléletesebb megoldást kapunk, ha - mint BohnerGéza is a kiegészítésben utalt rá - a feladatban kínálkozó középpontos hasonlóságokat nézzük. Legyen H1 a \lambda1=1/2 arányú, A' középpontú hasonlóság. Ez D-t A-ba képezi le. A H2,H3ill.H4 , mind \lambda2=\lambda3=\lambda4=1/2 arányú, B' , C' ill. D' középpontú hasonlóságok A-t B-be, B-t C-be, ill. C-t D-be képezik le. A négy hasonlóság eredője (szorzata) H5=H1.H2.H3.H4 tehát D-t fixen hagyja. Mivel \lambda1.\lambda2.\lambda3.\lambda4=1/16\ne1,H5 is egy középpontos hasonlóság, amelynek csak a középpontja fixpont, tehát D H5 középpontja. Felhasználva, hogy adataink alapján H1,H2,H3ésH4 a sík tetszőleges pontjára végrehajtható, valamint hogy középpontos hasonlóságnál egy pont, a képe és a hasonlóság középpontja egy egyenesen van, az alábbi szerkesztés adódik:

Vegyünk fel egy P0 és egy Q0 pontot. P0 képe H1-nél P1 , P1H2-nél P2, P2H3-nál P3, végül P3H4-nél P3. Hasonlóan kapjuk a Q1,Q2,Q3,Q4 pontokat. P0P4 és Q0Q4 egyenesek metszéspontja D.

P0 és Q0 ügyes megválasztásával a lépések száma csökkenthető. Például legyen P0=A'ésQ0=B' . Ekkor P1 is A', P2 A'B' felezőpontja, P3P2 és C' felezőpontja, P4 pedig P3 és D' felezőpontja. Q1 A'B' felezőpontja ( =P2) , stb . ld az ábrán.

Tovább egyszerűsíthető a szerkesztés, ha figyelembe vesszük, hogy H5 aránya 1/16, így D-t csak P0 és képei alapján is megkaphatjuk: a P0P4 szakaszt hosszabítsuk meg P4-n túl az 1/15-ével.

Szerkesztésünk helyességét igazolja ha a lépéseket számítással követjük. Tetszőleges P0-ból indulva P_1 = (P_0+A')/2 ; P_2 = (P_1 + B')/2 ... P_4 = 1/16 ( P_0 + A' + 2B' + 4 C' + 8D') ; D = P_0 + 16/15 ( P_4 - P_0 ) = \frac1{15} \cdot (8D' + 4C' + 2B' + A') , mint azt az egyenletrendszerből kaptuk.

b) Az AC átlóval kettévágott négyszög egyik része , az ABC \Delta területe fele a BB'C' \Delta -nek, mivel AB = BB' és C'B = 2 CB. Hasonlóan a négyszög másik része, ACD \Delta területe fele az A'DD' \Delta -nek. E két \Delta területe tehát együtt a négyszög területének duplája. Ugyanez igaz a BD átlóval kettévágott négyszögre és az A'B'A ill. C'D'C \Delta -ekre. Így A'B'C'D' területe 5-szöröse az ABCD területének.

Előzmény: [1002] BohnerGéza, 2008-03-27 22:32:12
[1003] BohnerGéza2008-04-02 19:41:53

Az a.) rész mo-hoz leképezések szorzatát ajánlom!

Előzmény: [1002] BohnerGéza, 2008-03-27 22:32:12
[1002] BohnerGéza2008-03-27 22:32:12

131. feladat: Az ABCD pozitív körüljárású négyszög minden oldalát, pozitív körüljárást tartva, meghosszabbíttottuk az oldal hosszával, kaptuk az A'B'C'D' négyszöget. ( pl. az AB' felezőpontja B )

a.) Ismerve A'B'C'D' négyszöget, szerkesztendő az ABCD!

b.) Hányszorosa az A'B'C'D' területe az ABCD területének?

[1001] HoA2008-02-18 15:56:38

A 130.feladat megoldása: Legyen az x, y, z szakaszok talppontja az a, b, c oldalak egyenesén rendre Ta,Tb,Tc. Merőleges szárú szögekről lévén szó, x és y bezárt szöge \gammavagy\pi-\gamma, mindenesetre a PTaTb \Delta területe \frac12 \cdot x \cdot y \cdot sin \gamma . Hasonló igaz PTbTc és PTcTa \Delta -ekre. Kifejezésünkben, melyet jelöljünk F-fel, helyettesítsünk a=2Rsin\alpha, b=2Rsin\beta, c=2Rsin\gamma szerint, ekkor F=2R(y.z.sin\alpha+z.x.sin\beta+x.y.sin\gamma). A zárójelben a fenti \Delta-ek előjeles területösszegének kétszerese áll. A továbbiakban azt vizsgáljuk, ez P milyen helyzetére lesz 0.

A \Delta belsejében biztosan nem, hiszen ott mindhárom tag pozitív. A \Delta 3 csúcsa viszont megfelel, hiszen ott x,y,z közül kettő 0, így az összeg mindhárom tagja 0. A 3 egyenes által 7 részre vágott síknak abban a 3 részében, melyek határán csak egy hsz csúcs van, x,y,z közül 2 negatív és 1 pozitív (P1 pont) , az előjeles \Delta területekből is így 2 negatív és 1 pozitív, de a két negatív területű \Delta egyesítése magában foglalja a pozitív területűt, így az összeg nem lehet 0. ( Ezt persze bizonyítani kell ) . A maradék 3 síktartományban x,y,z közül 2 pozitív és 1 negatív (P2 pont), az előjeles \Delta területekből így 2 negatív és 1 pozitív, az előjeles összeg csakkor lesz 0, ha a \Delta területek abszolút értékei közül kettőnek az összege megegyezik a harmadikkal. Ez pedig csakkor teljesül, ha a TaTbTc \Delta területe 0, vagyis ha Ta,Tb,Tc egy egyenesbe esik. Mivel ezek éppen a P-ből az oldalegyenesekre bocsátott merőlegesek talppontjai, a keresett mértani hely a \Delta körülírt köre.

UI: Itt is megkérdezem, tudja-e valaki, mi lett a sulinet.hu KöMaL archívumával?

Előzmény: [999] BohnerGéza, 2008-02-10 11:50:42
[1000] BohnerGéza2008-02-10 12:05:11

Ábra a 130. feladathoz:

Előzmény: [999] BohnerGéza, 2008-02-10 11:50:42
[999] BohnerGéza2008-02-10 11:50:42

130. feladat: Legyen a P pont előjeles távolsága az ABC háromszög oldalaegyeneseitől rendre x, y ill. z.

( Pl. x pozitív, ha BC-nek az A felöli oldalán van. )

Adjuk meg azon P-k mértani helyét, melyekre ayz + bzx + cxy = 0!

[998] HoA2008-01-31 13:04:36

Igen, szerintem nagyon szép "szerkesztéses" megoldás. Ha már itt tartunk, nem tudom volt-e már a fórumom - vagy máshol - a "szerkesszünk háromszöget ha adottak a magasságvonalai" feladat. És persze nem a reciprok szakaszok szerkesztésére, vagy - ha létezik - a magasságvonalakból szerkesztett háromszög magasságvonalaira, mint a szerkesztendővel hasonló háromszögre gondolok.

Előzmény: [997] BohnerGéza, 2008-01-30 15:29:05
[997] BohnerGéza2008-01-30 15:29:05
Előzmény: [996] BohnerGéza, 2008-01-30 14:29:12
[996] BohnerGéza2008-01-30 14:29:12

Nem tudom "szerkesztésesebb" megoldás-e, mint HoA-é a [993]-ban.

( Az Oa-t megkapjuk,ha O-t L-re tükrözzük. )

Előzmény: [992] komalboy, 2008-01-26 17:23:57
[995] HoA2008-01-29 17:59:48

Talán egy egylépéses meggondolás segít. Húzzuk meg a körnek a háromszög oldalaival párhuzamos érintőit. Mivel a háromszöglemez tartalmazza a kört, ezek az érintők nem alkothatnak az eredetinél nagyobb háromszöget, legfeljebb kisebbet. Ezt a második háromszöget a körrel együtt nagyítva az eredeti háromszöget és annak beírt körét kapjuk. A beírt kör tehát nem lehet kisebb eredeti körünknél.

Előzmény: [994] tolgyesik, 2008-01-29 17:20:34
[994] tolgyesik2008-01-29 17:20:34

A körül írt kör esetén én is megtaláltam az ellenpéldát, de a beírt kör esetén még mindig bizonytalan vagyok.

[993] HoA2008-01-29 10:48:47

Gondolatébresztőnek, amíg nem születik egy igazi "szerkesztéses" megoldás. Legyen adott az O középpontú, R sugarú k körvonalon az A pont, a kör belsejében a Q pont. Az Euler tétel szerint d2=R(R-2r) . Esetünkben d = OQ . Legyen az OQ-t Q-ban érintő, k-t metsző k' kör és k egyik metszéspontja S, OS és k' másik metszéspontja T. Ekkor a szelőtétel értelmében d2=OQ2=OS.OT=OS(OS-ST)=R(R-ST) . Tehát ST = 2r. A Q körüli, ST átmérőjű kör a háromszög beírt köre, a B és C csúcsokat e kör A-ból húzott érintői metszik ki k-ból.

Előzmény: [992] komalboy, 2008-01-26 17:23:57
[992] komalboy2008-01-26 17:23:57

Egy (remélem) könnyed feladat a geometriakedvelőknek: Adott egy körvonalon egy pont, és egy pont a körvonalon belül. Határozzunk meg a körvonalon másik két pontot úgy, hogy a körvonalra illeszkedő, ezen három pont alkotta háromszög beírható körének középpontja legyen az adott belső pont.

[991] rizsesz2008-01-25 13:27:31

Amúgy amit 7-re írtam, az igaz :)?

Előzmény: [989] rizsesz, 2008-01-25 13:11:46
[990] jonas2008-01-25 13:24:05

A 8. viszont nem igaz általában. Hegyesszögű háromszögre a körülírt kör a legkisebb sugarú ilyen kör, tompaszögű háromszögre viszont a hosszú oldal Thales-köre az -- derékszögűre a kettő megegyezik.

Előzmény: [988] tolgyesik, 2008-01-25 11:52:31
[989] rizsesz2008-01-25 13:11:46

7. egy olyan kör van, ami egy háromszög minden oldalát belülről érinti, ez a beírt kör. Tegyük fel, hogy találtunk egy maximális sugarú kört, ami nem érinti mind3 oldalt. Ekkor ha 2 érintési pont van, akkor azokat rögzítve a kört nagyíthatjuk, méghozzá úgy, hogy a középpontját a 2 két érintési pont szakaszfeleő merőlegesén eltoljuk. Így előbb-utóbb mindenképpen eljutunk a beírt körhöz.

Előzmény: [988] tolgyesik, 2008-01-25 11:52:31
[988] tolgyesik2008-01-25 11:52:31

Kedves Fórumozók!

Két régi feladatról olvastam a fórumon, és felmerült bennem a kérdés, hogy ez a két állítás mégsem triviális?

7. feladat: Igaz-e, hogy a (nem elfajuló) háromszög beírt köre a legnagyobb sugarú kör, melyet a háromszöglemez tartalmaz?

8. feladat: Igaz-e, hogy a (nem elfajuló) háromszög köré írt kör a legkisebb sugarú kör, mely tartalmazza a háromszöglemezt?

[987] Süni1312008-01-23 20:48:01

Kedves Fórumozók!

Egyező átmérőjű körök középpontjai egy egyenesen, egymástól egyenlő távolságra helyezkednek el. Hogyan tudnám meghatározni egy másik egyenesnek az előzővel bezárt minimális szögeit, ha a feltétel a következő:

az egyenes által kimetszett húrhosszúságok összege nem haladhatja meg az 1, 2,...,n körátmérőt, az egyenesnek az adott szögek alatti bárhová történő eltolása mellett.

A segítséget előre is köszönöm,

Üdv: Süni131

[986] HoA2008-01-21 14:03:33

Konkrét irodalmat nem ismerek, de mivel eddig senki sem reagált, leírom az ötleteimet. Szerintem a feladatot a regressziós egyenes mintájára lehet kezelni. Ott adva van n db pont - (xi,yi) koordinátapár - melyek nem pontosan egy egyenesre illeszkednek és a feladat a pontokra legjobban illeszkedő y = ax + b egyenes megadása. Mint tudjuk, ha az eltérés mértékének a \sum {\Delta y^2} -t vesszük, ahol \Deltayaz egyenes xi -beli y koordinátájának és yi -nek a különbsége, akkor az eltérés a ill b szerinti deriváltját 0-nak véve az egyenes a ás b paramétereire elsőfokú egyenletrendszert kapunk.

Egyszerűség kedvéért vegyünk először egy síkbeli példát 3 ponttal. Legyenek adva az A,B,C pontok, valamint az A*, B*, C* pontok koordinátái. Feltesszük, hogy az ABC és A*B*C* háromszögek nagyjából hasonlóak és keressük azt a transzformációt, mely ABC-t az A*B*C*-t jól közelítő A'B'C'-be viszi át. Ha AB és A'B' különböző hosszúak és nem párhuzamosak, ez egy nyújtva forgatás. Ha alakzatainkat a komplex számsíkon ábrázoljuk, a nyújtva forgatásnak egy z'=z0+wz transzformáció felel meg, - ld. Pl. Reimann István:Geometria és határterületei - és itt is az a feladat, hogy határozzuk meg a z0 és w számokat úgy, hogy az A,B,C pontok képei, A'B'C' a "legközelebb" legyenek az A* B* C* pontokhoz. A hiba mértékének talán itt is tekinthetjük az A'A* ... távolságok négyzetösszegét. Azt persze nem mondom, hogy z0-ra és w-re itt is elsőfokú egyenletrendszert kapunk, de ha máshogy nem, közelítő módszerekkel a feladat megoldható.

Térbeli transzformációnál még bonyolultabb a helyzet, de ott is megtalálható az a transzformáció, mely két hasonló alakzat egyikét a másikba átviszi (tenzor?) és ott is felírható a megadott A*, B* , ... és a transzformáció által létrehozott A', B', ... pontok távolságának négyzetösszege, illetve ennek az összegnek a transzformációs objektum paramétereitől való függése. Utána már csak néhány deriválás és egyenletrendszer megoldás van hátra..

Előzmény: [983] farkasb, 2008-01-08 19:34:30
[983] farkasb2008-01-08 19:34:30

Tisztelt Fórumozók!

Nem egy konkrét feladatot, kérdezek, hanem csak azt, hogy ismer-e valaki olyan segédletet, anyagot, módszert, ami alapján el tudnék készíteni egy térbeli transzformációt, hogy: - adott egy térbeli alakzat elméleti alakjának koordinátái egy globális rendszerben - adott ugyanennek az alakzatnak a koordinátái egy lokális koordinátarendszerben, és a pontjai kis mértékben eltérnek az elméleti alakzattól - és ezt a lokális rednszert szeretném a globálisba transzformálni közös pontok felhasználásával úgy, hogy közben lehessen látni az ellentmondásokat, eltéréseket, hibákat, és ki lehessen venni a transzformációs paraméterek számításából azokat a pontokat, amik nagy mértékben eltérnek. Előre is köszönnettel: farkasb

[982] BohnerGéza2008-01-06 13:56:35

Kettővel ezelőtti hozzászólásomban E-t és F-et végig felcseréltem. Elnézést!

Előzmény: [984] BohnerGéza, 2008-01-06 02:15:02
[981] BohnerGéza2008-01-06 02:29:39

Érdemes tudni, hogy egy AB szakasz látókörének két íve nem teljesen egyenértékű. Ha az egyikről AB fí szögben látszik, akkor a másikról -fí-ben.

Tekintsük HoA [978] ábráját! Ott lényeges a feladat szempontjából, hogy F-ből DA és CB ugyanolyan irányítású egyforma szögben látszik, ez a DEA(=CEB) szöggel egyenlő.

Előzmény: [979] HoA, 2008-01-04 15:42:37
[984] BohnerGéza2008-01-06 02:15:02

Köszönöm HoA!

A 129. feladat kitűzésekor valóban arra gondoltam, ha minden olyan ABCD négyszögre igaz, melyben AB nem egyenlő CD-vel, azaz valódi hasonlósággal (körüljárástartó) kaphatjuk AB-ből CD-t, akkor E a megfelelő forgatva nyújtásnsak a kp-ja, tehát a fixpontja is.

Ehhez minden lehetőségre meg kell mutatni, hogy E mindig a körök AFD ill. BFC ívén van. (Pl. akkor is, ha F az AB szakaszon van. )

Még azzal is, kell kezdeni valamit, ha a két kör érinti egymást - F-ben.

Sőt Az AB párhuzamos CD-t is vizsgálni kell. Mindezt a fórumon pontosan leírni nem érdemes - a következő hozzászólásban egy dologról még írok-, de:

Ha mindent megmutattunk, akkor bebizonyítottuk, hogy minden valódi hasonlóságnak van fixpontja. A feladat - a speciális eseteket kivéve - lehetőséget mutat a fixpont szerkesztésére.

Előzmény: [977] HoA, 2008-01-04 10:43:57

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]