Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Fizikások válaszoljanak

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]  

Szeretnél hozzászólni? Jelentkezz be.
[265] kefehu2009-04-06 23:14:19

Sziasztok!

Lenne nekem is egy kérdésem fizikával kapcsolatban.

Van egy szerves kristály acetonban feloldva. Csinálok belőle finom, elektromosan feltöltött apró cseppeket (pl. electrospray-el). Ahogy az aceton elpárolog, apró kristályok fognak képződni a cseppekből. Kérdés: töltöttek lesznek-e a keletkező kristályok vagy sem?

Megkérdeztem egy szakit erről, szerinte töltöttek maradnak. Mondtam, hogy jó, de nekem bizonyíték kell, amivel alá tudja ezt támasztani (pl. egy publikáció). Erre azt mondta, hogy ez egyértelmű. Szóval nem csak egy sima választ várnék, hanem valami bizonyítékot is hozzá.

Előre is köszönöm a segítséget!

[264] stony132009-04-01 16:35:48

3. kérdés: a hőveszteség melegíti a folyót, ami 1 másodperc alatt = a befektetett - hasznos teljesítmény (Pb - Ph) => Pb - Ph = m * c * dt, ahol m - az egy másodperc alatt felmelegített víz tömege, c - a víz fajhője, dt - a maximális megengedett hőmérséklet változás => m = (Pb - Ph) / c * dt = 35,7 * 1000 kg => 35,7 m3 a minimális hozama a folyónak

Előzmény: [261] jeneit92, 2009-03-21 16:43:00
[263] stony132009-04-01 16:17:30

2. kérdés: P = W / t = M * c / t ahol P - befektetett teljesítmény W - befektetett energia t - időtartam (1 nap) M - az elégetett szén tömege c - a szén égéshője

=> M = P * t / c = 4320 tonna

Előzmény: [261] jeneit92, 2009-03-21 16:43:00
[262] stony132009-04-01 15:58:36

1. kérdés: hatásfok = hasznos / befektetett energia = hasznos / befektetett teljesítmény => befektetett teljesítmény = hasznos telj. / hatásfok = 1250 MW

Előzmény: [261] jeneit92, 2009-03-21 16:43:00
[261] jeneit922009-03-21 16:43:00

Sziasztok!

VAn egy feladat aminek a megoldása eddig nem igazán lett meg nekem hálás lennék ha valaki tudna segíteni.

Egy széntüzelésű gőzturbinákkal működő hőerőmű mechanikai kimenő teljesítménye 500 MW hatásfoka 40százalék.Mekkora hőteljesítményt kell betáplálni?Mennyi szenet kell ehhez naponta elégetni,ha a szén égéshője 2,5x (10 a hetediken)j/kg?Ha az erőmű hűtését egy folyó vízével biztosítják,amelnyek hőmérséklete legfeljebb 5 C-kal növekedhet,minimálisan hány m3 víznek kell a folyóban másodpercenként ehhez átáramlani?

[260] jeneit922009-03-21 16:38:53

Egy széntüzelésű gőzturbinákkal működő hőerőmű mechanikai kimenő teljesítménye 500 MW hatásfoka 40

[259] jeneit922009-03-21 16:38:06

Sziasztok!

VAn egy feladat aminek a megoldása eddig nem igazán lett meg nekem hálás lennék ha valaki tudna segíteni.

Egy széntüzelésű gőzturbinákkal működő hőerőmű mechanikai kimenő teljesítménye 500 MW hatásfoka 40

[258] Janosov Milán2009-02-17 21:59:47

Köszönöm a segítséget, sokat segített a téma megismerésében!

Előzmény: [252] Alma, 2009-02-12 13:27:16
[257] Kirimi2009-02-17 16:47:55

A szöveget leírtam. A megoldáshoz nincs fűzve szöveges kommentár, csak képletek.

N=2\pikQ

A=2R\pid

E=\frac{N}{A}=\frac{kQ}{dR}

F=qE=k\frac{Qq}{dR}

Most én ezt úgy értelmeztem, hogy N a lemez egyik oldalan kilépő erővonalak száma. Azt gondoltam, hogy az A egy gömbsüveg felülete, de már rájöttem, hogy abban a képletben más az R. Úgyhogy tényleg nem gömbsüvegen oszlik meg az erővonalak száma. De még mindig foggalmam sincs, hogy miért ez az eredmény. Ha valaki tudna valami részletesebb (érthetőbb) megoldást írni a feladatra, azt megköszönném.

Előzmény: [256] HoA, 2009-02-16 15:14:52
[256] HoA2009-02-16 15:14:52

Jó lenne, ha pontosan leírnád ( lapolvasóval bemásolnád ) , mit ír a könyv a feladatról és a megoldásról. Akkor nem kellene tippelgetnünk, mi is lehet a megoldás elve.

Előzmény: [253] Kirimi, 2009-02-15 12:59:03
[255] Alma2009-02-16 11:27:44

Szerintem az állítás nem igaz. Képzeld el egy nagy gömb nagy süvegét (tehát a gömb süvege nagy, és a körlap csak egy nagyon kicsi részét vágja le a másik oldalon)! Ekkor, ha eléggé elmegyünk a végletek felé, akkor a gömb túloldaláról, messziről a körlap pontszerűnek fog látszani. Ebben az esetben pedig nem nem igaz, hogy a gömb minden pontján ugyanakkora lesz a térerősség, ponttöltés esetén ezt elég könnyű belátni. Ha pedig ebben a határesetben nem igaz az állítás, akkor szerintem máskor sem.

Este majd készítek szerintem egy ábrát is, hogy el lehessen képzelni amit összeírtam, csak most rohanok órára.

Előzmény: [253] Kirimi, 2009-02-15 12:59:03
[254] Fálesz Mihály2009-02-16 11:05:24

"Egy R sugarú kör alakú fémlapon Q töltést halmoztunk fel. A töltéseloszlás egyenletes."

Szerintem már a feladat eleje is sántít --- vagy pedig én sántítok, amit szintén nem lehet kizárni. Nem a körlap kerülete mentén kellene eloszlania a töltésnek...?

Előzmény: [253] Kirimi, 2009-02-15 12:59:03
[253] Kirimi2009-02-15 12:59:03

Láttam egy régi feladatgyűjteményben egy ilyen feladatot:

Egy R sugarú kör alakú fémlapon Q töltést halmoztunk fel. A töltéseloszlás egyenletes. Elhelyezünk egy q töltésű testet is a térben méghozzá úgy, hogy a testet a kör közepével összekötő szakasz hossza d, és ez a szakasz merőleges a körlapra. Határozzuk meg a rá ható elektromos erő nagyságát!

A megoldásban azt használja ki a könyv, hogy a fémlap egyik oldala köré írt gömbsüveg felszínén bármely pontban ugyanakkora a térerősség, de azt nem írja le, hogy ez miért van így. Hogyan tudnám ezt belátni?

[252] Alma2009-02-12 13:27:16

A speciális relativitáselmélet szerint van egy sebesség, amely minden inerciarendszerben ugyanakkora. Ez a sebesség a fénysebesség. A fény segítségével képesek vagyunk egy órát konstruálni, ennek fényóra a neve. Ez egy egyszerű szerkezet. Van két párhuzamos lapja (mint egy kondenzátornak), és a kettő között ide-oda közlekedik egy foton. Egy adott pillanatban indítsunk egy fotont az egyikről,és mindig meg tudjuk majd figyelni, amikor visszaér. Ez a szerkezet tehát egy óra, hiszen adott időközönként történik valami.

Most azt képzeld el, hogy ez a fényóra hozzád képest v sebességgel mozog (és a lemezek normálvektorai merőlegesek a sebességvektorra). Ekkor, ahhoz hogy a fény mindig ugyanabba a pontba érkezzen vissza a fényórában, a fénynek "ferdén" kell mennie. Így, ki tudod számolni, hogy a mozgó fényóra mennyivel jár lassabban (mennyivel több idő telik el két detektálás között), mint a te, álló fényórád. (egyszerű geometria)

Azt pedig könnyű megérteni, hogy miért "telik lassabban az idő" abban a koordinátarendszerben, ahol lassabban jár a fényóra. Képzeld el, mi lenne, ha lenne egy másik olyan jelenség, melynek van karakterisztikus ideje amit mérni tudsz, és ez máshogy módosul mozgó koordinátarendszerben, mint a fényóra karakterisztikus ideje. Ekkor tudod mérni a kettő eltérését egy adott koordinátarendszerben, és meg tudnád határozni ebből az abszolút sebességedet. A relativitáselmélet alapfeltevése pedig az, hogy ,árpedig kitűntetett koordinátarendszer nincs, minden koordinátarendszer ekvivalens, abszolút sebességek nem léteznek.

Remélem valamivel világosabbá tettem a témát. A konkrét képletét az idődilatációnak megtalálod a függvénytáblázatban, a levezetését pedig úgyahogy elmondtam.

Előzmény: [251] Janosov Milán, 2009-02-10 17:57:50
[251] Janosov Milán2009-02-10 17:57:50

Köszönöm a választ. Valami ilyesmire gondoltam én is, csak számszerűsítve, ami az igazi nehézség számomra. Azt hogyan? (a relativitáselmélettel való kapcsolatom nem sokkal mutat túl a "van"-on)

Előzmény: [250] Tibixe, 2009-02-09 20:00:43
[250] Tibixe2009-02-09 20:00:43

Az élettartamot az adott részecske belső ,,órája'' szerint kell értelmezni.

Itt jön be az idődilatáció: ha a részecske gyors ( márpedig gyors ), akkor ez az ,,óra'' a földi szemlélő szemszögéből NAGYON lassan jár.

( precízkedni nem volt kedvem )

[249] Janosov Milán2009-02-09 16:34:21

Üdvözletem!

Egy ismeretterjesztő-könyvbéli olvasatélmény szerint a müonok az űrből képesek a földre lejönni. Valaki el tudná nekem mondani, hogy ez miért lehetséges? Az éltetartam 2*10-6 s , és gondolom a sztratoszféra magasságától kell kezdeni a vizsgálódást, ami 100km magasan kezdődik. Gondolom az idődilatációval van összefüggésben, de nem sikerült rájönnöm.

[248] jonas2009-02-08 13:39:36

Könyvtári katalógus szerint úgy tűnik, hogy 1988-ban. Nem próbálod meg valamelyik könyvtárból hosszabban kikölcsönözni?

Előzmény: [247] Willy, 2009-02-05 02:10:19
[247] Willy2009-02-05 02:10:19

Van egy dilemmám, de nem nagyon fizikai témájú...

Mikor nyomtatták az utolsó Landau-Lifsic-féle Elméleti Fizika kötetet? Nekem van egy olyan infóm, mintha az 1970-es évek vége lenne a válasz... Ráadásul nem is lehet hozzájutni az ilyen dolgokhoz, maximum antikváriumban benyöghetünk egy előjegyzést. (A szkennelt dolgokkal az a baj, hogy a képletek gyakran olvashatatlanok és kinyomtatva ez halmozottan érvényesül.) Vajon lesz újranoymás valaha? Vagy lehet-e módot találni arra, hogy összeszedjük azokat akiknek kell és együtt egy közös nyomtatást kieszközöljünk?

[246] vini772009-01-30 22:08:57

Gyönyörű megoldás :)! Természetesen Neked is köszönöm, hogy szakítottál időt a feladat megoldására.

Előzmény: [245] HoA, 2009-01-30 10:43:33
[245] HoA2009-01-30 10:43:33

Látom közben megoldottad, de ha már megcsináltam beírom. Mivel az ellipszis érintője egyenlő szögeket zár be az érintési pontból a fókuszokba húzott egyenesekkel, nem meglepő, hogy [240] és [242] megközelítése ugyanazt az eredményt adja. Legyen a csiga egyensúlyi helyzete D-ben. A D-n át húzott vizszintes egyenes és AC metszéspontja E. A tükörképe E-re F. Ekkor a zöld szögek egyenlősége miatt B, D és F egy egyenesre esik, BF távolság a kötél hossza. Ez utóbbi az adatokból mint AC és BC összege számítható. Numerikusan l = 5,2 + \sqrt{ 11,2^2 + 21^2 } = 29 OF = \sqrt{ BF^2 - OB^2 } = \sqrt { 29^2 - 21^2 } = 20 E az AF felezőpontja, O alatt \frac {6 + 20}{2} = 13 méterre van, tehát C alatt 13- 11,2 = 1,8 méterrel.

Előzmény: [244] vini77, 2009-01-30 10:12:11
[244] vini772009-01-30 10:12:11

Nagyon szépen köszönöm a segítséget! Így valóban könnyű volt eljutni a megoldásig. Azt hiszem, nem láttam a fától az erdőt :)

Íme, a megoldás...

Előzmény: [243] SmallPotato, 2009-01-29 17:49:07
[243] SmallPotato2009-01-29 17:49:07

Súrlódás híján az egyensúlyi helyzetben a két kötélágban azonos nagyságú erő ébred. Ezek vízszintes összetevői is egyenlők kell hogy legyenek (mivel az egyensúlyban lévő csigára összesen ez a két vízszintes erő hat), így tehát a két kötélág a függőlegessel azonos szöget kell hogy bezárjon. A megoldás e szög megtalálását jelenti. Tükrözd a bal oldali kötélágat a csigán átmenő vízszintesre, keress azonos szögeket és hosszakat; a kérdéses szög igen egyszerű módon számítható. A keresett függőleges helyzet innen már szintén egyszerűen adódik.

Előzmény: [239] vini77, 2009-01-29 10:17:36
[242] zakw2009-01-29 14:24:44

Sziasztok! Egy hete volt egy rövidfilm a Da Vinci Learning-en, ahol gyerekek kutyát akartak fürdetni. A szabadba kvittek egy nagy műanyag ládát, feltöltötték vízzel. De a csapvíz túl hideg volt, ezért egy fekete műanyag cső egyik végét rögzítették a láda egyik sarkába (a vízszint közelébe). A másik végét megszívták és ledugták a láda aljáig. A narrátor szerint a csőben a víz elkezdett cirkuláni, a nap bizonyos idő alatt felmelegítette és megfelelő lett a hőmérséklet a kutyafürdetésre.

Csodálkoztam a megoldáson, mert úgy tudtam, hogy ilyen módon csak egy alacsonyabban lévő edénybe lehet átfejteni a folyadékot. Kipróbáltam és nem működött. Egy másik edényt tettem ugyanolyan magasságba, oda átjött a víz, de csak addig, amíg a vízszint el nem érte az eredeti edényben lévő szintet.

Úgy tűnik, hogy a bemutatott példa nem működhet. Ha ugyanabba az edénybe teszem a cső másik végét, akkor a vízszint megegyezik és nem indul el az áramlás.

Próbáltam hasonló fizikai feladatokat keresni, Bernoulli egyenlettel kiszámítani, de nem sikerült, pedig műszaki végzettségem van, de a középiskola már régen volt. Tudnátok segíteni ebben a kérdésben? Mit csinálok rosszul?

[241] vini772009-01-29 13:07:57

Kösz a segítséget! Sajnos így sem tudok eljutni konkrétan, számítással a válaszig. A b) kérdés az megvan, ha az a)-ban kérdezett távolság is megvan. Tudnál a számítás menetében segíteni? Köszönöm!

Előzmény: [239] vini77, 2009-01-29 10:17:36

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]