| [1087] nadorp | 2005-10-19 22:54:01 |
 Ha és g(x)=x2-5, akkor az f(x)=g(x) egyenletet kell megoldani.Ekkor
g(f(x))=g(g(x) is teljesül. De g(f(x))=x, ezért
g(g(x))=x
Ha g(x)=x, akkor g(g(x))=x is teljesül, ezért az x2-5=x egyenlet gyökei az eredetinek is gyökei, azaz x2-x-5 a Csimby által említett egyik tényező.
|
| Előzmény: [1081] philip, 2005-10-19 17:44:52 |
|
|
| [1085] Csimby | 2005-10-19 21:08:00 |
 A lényeg, hogy valahogy kitalálod a szorzattá bontást:
x4-10x2-x+20=(x2-x-5)(x2+x-4)
És mivel a szorzat akkor 0, ha valamelyik tényező 0, ezért elég ezt a két másodfokú egyenletet megoldanod.
|
| Előzmény: [1084] philip, 2005-10-19 20:53:44 |
|
| [1084] philip | 2005-10-19 20:53:44 |
 esetleg nincsen valami ojan megoldási lehetőség,amit 10dikes fejjel meglehet csinálni.....ugyanis nemigazán vettünk minden ojan anyagot,ami az általad leírt megoldásban szerepel.....
|
|
|
| [1082] Csimby | 2005-10-19 19:20:29 |
 Négyzetre emeljük mindkét oldalt és egy oldalra rendezzük:
f(x)=x4-10x2-x+20=0
Próbáljuk meg két másodfokú szorzatára bontani (mindkét tényezőben a főegyüttható 1, hiszen a szorzat főegyütthatója a tényezők főegyütthatójának szorzata):
(x2+ax+b)(x2+cx+d)
Végezzük el a szorzást! Két polinom akkor egyenlő, ha az együtthatóik egyenlőek, tehát az alábbi egyenleteket írhatjuk fel:
0=a+c
-10=d+b+ac
-1=ad+cb
20=db
A Második Gauss Lemma szerint ha f egész együtthatós polinomot felbontottuk a racionális együtthatós g és h polinomok szorzatára, akkor g és h megszorozható alkalmas racionális számokkal úgy, hogy a kapott g0 és h0 polinomok egész együtthatósak legyenek és f=g0h0 teljesüljön.
Ezért tehettük föl, hogy h és g főegyütthatója 1 (vagy asszociáltja) és kereshetjük a kapott egyenletrendszer megoldását az egész számok körében. Amit innentől szerintem be tudsz fejezni.
Ha kijöttek az együtthatók, megoldod a két másodfokú egyenletet a megoldóképlettel, így 4 gyököt fogsz kapni. De 2 gyök nem elégíti ki az eredeti egyenletet, hiszen ott a bal oldal pozitív -> a jobboldal is pozitív -> 
|
| Előzmény: [1081] philip, 2005-10-19 17:44:52 |
|
| [1081] philip | 2005-10-19 17:44:52 |
 Sziasztok!Lehet ,hogy nem az érdekes feladatok közé tartozik,de segítség kellene ennek az egyenletnek a megoldásában...A segítséget előre is köszönöm!
|
 |
|
|
|
| [1078] Sirpi | 2005-10-18 10:29:55 |
 Na, ez a feladat nagyon tetszett, nem hallottam még korábban, csak mindenféle elcsépelt egyféle bábos felpakolásokat.
8x8-asra k=5, 10x10-re k=7 (tovább még nem volt időm vizsgálódni), mindkettőre van konstrukcióm, és könnyű látni, hogy többet nem lehet felrakni. Utóbbinak leírom a bizonyítását, ábrát egyelőre nem teszek fel.
Szóval ha egy nxn-es sakktáblára fel lehet tenni k db bástyát és futót egyszerre, akkor teljesülnie kell az (n-k)2 k egyenlőtlenségnek. Ez úgy jön ki, hogy a k db bástya mind külön sort és oszlopot kell, hogy elfoglaljon, így a futóknak már csak egy (nem feltétlen egybefüggő) (n-k)x(n-k)-s részrácson marad hely. Itt el kell férnie mind a k futónak, innen jön, hogy (n-k)2 k, ahonnan viszont adódik, hogy , ez pedig n=8-ra , tehát ekkor k<6, vagyis k 5. Hasonlóan adódik n=10-re, hogy k 7.
Ez utóbbi nehezebb különben, mert míg 8-ra 5 db futónak kell elférnie egy 3x3-as területen, addig 10-re ugyanígy egy 3x3-as részre 7 futót kell bepréselni.
|
| Előzmény: [1073] rizsesz, 2005-10-17 00:28:27 |
|