Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[1246] Lóczi Lajos2006-04-08 23:05:50

229. feladat.

a.) Adjunk példát olyan f(x,y) kétváltozós valós függvényre, hogy valamely a,b,c,d véges határok mellett nem létezik az \int\int_{[a,b]\times[c,d]} f kettős Riemann-integrál a téglalapon, de létezik az \int_a^b \left(\int_c^d f(x,y) dx \right)dy iterált kétszeres integrál.

b.) Adjunk példát olyan f(x,y) kétváltozós valós függvényre, hogy valamely a,b,c,d véges határok mellett létezik az \int\int_{[a,b]\times[c,d]} f kettős Riemann-integrál a téglalapon, de nem létezik az \int_a^b \left(\int_c^d f(x,y) dx \right)dy iterált kétszeres integrál.

c.) Adjunk példát olyan f(x,y) kétváltozós valós függvényre, hogy valamely a,b,c,d véges határok mellett léteznek ugyan az \int_a^b \left(\int_c^d f(x,y) dx \right)dy és \int_c^d \left(\int_a^b f(x,y) dy \right)dx iterált kétszeres integrálok, de nem egyenlőek.

[1245] Lóczi Lajos2006-04-08 22:04:46

Sajnos nem világos még mindig. Veszem az f(x)=1, g(x)=x.arctg(cos x) párt. Felírom: \int f dg=[fg]-\int g df. Itt a jobboldali integrál 0 lesz az \int g df=\int g f' dx azonosság miatt.

Hogyan marad tehát bent a jobb oldalon a bal oldali integrál, honnan jön a többi tag és a 2-es szorzók?

Előzmény: [1244] hobbymatekos, 2006-04-08 18:11:15
[1244] hobbymatekos2006-04-08 18:11:15

Valamint  \int_a^b fdg = \int_a^b f g`dx Az első formula amit felirtál a két fv. felcserélése, ez pedig a d(*) cseréje.

Előzmény: [1243] Lóczi Lajos, 2006-04-08 15:04:38
[1243] Lóczi Lajos2006-04-08 15:04:38

Nem egészen értem, hogyan jöttek ki ezek a formuláid. Gondolom, a parciális integrálás képletét használod benne:

\int_a^b f dg=[f g]_a^b-\int_a^b g df.

Hogyan lesz ebből az, amit írtál?

Amúgy ezzel a gondolatmenettel a Riemann-Stieltjes integrál teljesen kiküszöbölhető, a közönséges Riemann-integrál parciális integrálási képletét alkalmazzuk az f(x)=x és g(x)=arctg(cos x) párra, és használjuk fel, hogy a tükörszimmetria miatt \int_0^\pi {\rm{arctg}}(\cos x)=0.

Előzmény: [1242] hobbymatekos, 2006-04-08 10:13:01
[1242] hobbymatekos2006-04-08 10:13:01

persze elirás nélkül:

\int_0^\pi 1 d(x arc~\tan(\cos(x))) = 2 
[x arc ~\tan(\cos(x))] + 2I + \int_0^\pi 1 d(x arc~\tan(\cos(x)))

 I= -[x arc ~\tan(\cos(x))]_0^\pi = \frac {\pi^2}{4}

Előzmény: [1241] hobbymatekos, 2006-04-08 09:59:17
[1241] hobbymatekos2006-04-08 09:59:17

Én arra jutottam: ha a kérdéses határozott integrált I jelöli,

\int_0^\pi 1 d(xarc~\tan(\cos(x)))
= [xarc~\tan(\cos(x))]_0^\pi +2I +\int_0^\pi 1 d(xarc~\tan(\cos(x)))

I=-[xarc~\tan(\cos(x))]_0^\pi = \frac {\pi^2}{4}

Előzmény: [1240] Lóczi Lajos, 2006-04-07 17:52:00
[1240] Lóczi Lajos2006-04-07 17:52:00

Egy válasz: mivel nincs megmondva, mi a másik g függvény, ami generálja a Riemann-Stieltjes integrált, ezért vehetjük azt, hogy g(x)=x. Ekkor az \int_a^b f dg Riemann-Stieltjes integrál a közönséges Riemann-integrál lesz, és az [1205]-ben leírt megoldásom megoldja a 228-as feladatot.

Előzmény: [1233] hobbymatekos, 2006-04-06 22:25:57
[1239] Lóczi Lajos2006-04-07 11:33:09

Kíváncsi vagyok erre. (Mit választasz a másik g függvénynek, ami a mértéket generálja \int f dg-ben? És vajon milyen formula az, ami ki tudná hozni az eredményt... Sem a helyettesítéses integrálás, sem a parciális integrálás képletét Riemann-Stiletjes integrálokra nem látom, hogy miért segítene itt.)

Előzmény: [1238] hobbymatekos, 2006-04-07 09:38:41
[1238] hobbymatekos2006-04-07 09:38:41

Igen.

Előzmény: [1236] Lóczi Lajos, 2006-04-07 00:38:51
[1237] Lóczi Lajos2006-04-07 05:16:17

"Valahogy úgy érzem, a határozott integrálok nem igazán érdekesek, mint számértékek" -- ennek az érzésnek ellentmond például a valószínűségszámításbeli bolyongás különböző dimenziókban. Pólya óta tudjuk, hogy 1 és 2 dimenzióban 1 valószínűséggel visszatér a bolyongó részecske a kiindulási pontba. 3 dimenzióban viszont pozitív valószínűséggel nem tér vissza a részecske a kiiindulási pontba. Ezek a tények pedig bizonyos (többszörös) határozott integrálok értékén múlnak.

Eléggé meglepő, hogy míg

\int_{-\pi}^{\pi} \frac{1}{1-\cos x} dx=\infty,

illetve

\int_{-\pi}^{\pi}\int_{-\pi}^{\pi} \frac{1}{2-\cos x-\cos y} dx dy=\infty,

addig

\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}\int_{-\pi}^{\pi} \frac{1}{3-\cos x-\cos y-\cos z} dx dy dz\approx 125.378,

és emiatt viselkedik másképp a részecske 1 és 2 dimenzióban. Itt nem utolsó szempont kifejezni tudni a harmadik integrál pontos értékét "elemibb" kifejezések segítségével.

Előzmény: [1233] hobbymatekos, 2006-04-06 22:25:57

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]