Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[1584] epsilon2006-12-04 15:36:55

Gratulálok Cchek, nagyon elegáns bizonyítás a monotonításra,...hmmm...ezek szerint a korláttal megint elnéztem valamit...:-(

[1583] epsilon2006-12-04 15:26:56

Nézzük csak a p<-2 esetet. Hátha megint nem írok el valamit! Szóval használom az előző g(x)=f(x)-x=x*x-x+p függvényt, és igazolom, hogy p<-2 mellett g(x)>0 így amennyiben a(1)<-2 márpedig ez igaz (mert p-vel egyenlő), úgy a sorozat megint monoton növekvő lesz. Az x*x-x+p=0 zérushelyei a következők: x(1)=(-1-sqrt(1-4p))/2 illetve x(1)=(-1+sqrt(1-4p))/2. Könnyen igazolható, hogy a p<-2 miatt x(1)<-2, ezért amikor a(1)=p<x(1)<-2 ekkor g(x)>0 (a trinom a gyökökön kivűl a főegyütthatók előjelével egyező előjelű), ami azt jelenti, hogy a a(n+1)=f(a(n))rekurzióval értelmezett sorozat monoton növekvő. Ha korlátos lenne, akkor konvergens is lenne, és a limesze éppen a=x(1)=(-1-sqrt(1-4p))/2 lenne, vagyis ez lenne a felső korlát. Közben most látom, hogy Cckek máris írt, de még nem mérlegeltem, ezt elengedem, aztán azt is mérlegelem.

[1582] Cckek2006-12-04 15:17:55

Ebben az esetben a_n>\frac{1+\sqrt{1-4p}}{2} tehát

a_{n+1}-a_n=(a_n-\frac{1+\sqrt{1-4p}}{2})(a_n-\frac{1-\sqrt{1-4p}}{2})>0 a sorozat nem korlátos.

Előzmény: [1581] Lóczi Lajos, 2006-12-04 14:01:58
[1581] Lóczi Lajos2006-12-04 14:01:58

Köszönöm a szép hozzászólásokat, igen, tehát tetszőleges p>1/4 esetén a szóban forgó an sorozat +\infty-be divergál.

Folytatás. Adjuk meg azokat a p<-2 értékeket, melyekre az illető sorozatunk korlátos.

[1580] epsilon2006-12-04 13:46:29

Végül is elgondolkozva, a leírtakból erre következtetek: ha p>1/4 akkor a sorozat monoton növekvő és korlátlan, az az divergens. Erre jutok akkor is, ha a(n+1)=f(a(n)) típusú rekurzióként kezelem, ahol f(x)=x*x+p és bevezetve g(x)=f(x)-x jelölést, g(x)=1/4*(2x-1)*(2x-1)+p-1/4>0 ami azt jelenti, hogy a fentiekben értelmezett sorozat monoton növekvő és korlátlan!

[1579] epsilon2006-12-04 13:24:56

Bocs, valóban elírtam :-( túl korán reggel volt, és éppen egy szünetben olvastam: a helyes egyenlet úgy ahogyan javítoták, így a limeszre térés után a=a×a+p ahonnann a beszámítható "a" amit írtam, valóban komplex szám (itt sem figyeltem a p>1/4-et (illetve pont fordítva láttam :-( de tudjuk azt, hogy a sorozat monoton növekvő, és ha felülről korlátos lenne, akkor a legjobb felső korlát, a supremum, éppen ez az a=lim a(n) kellene legyen, vagyis úgy tűnik (?), hogy a p>1/4 feltétellel ellentmondásba kerülünk (?) vagyis nem létezne p>1/4 amire korlátos lenne(?)

[1578] jenei.attila2006-12-04 12:53:18

Szerintem epsilon csak elírta a rekurziót, mert utána már jól használja. Helyesen: a1=p,an=an-12+p A Te egyenleted, viszont nem jó, mert nem az előző tag négyzetéhez adja az előző tagot, hanem az előző tag négyzetéhez mindig p-t. Így a levezetésed sem jó, csak az első két tagra.

Előzmény: [1577] Sirpi, 2006-12-04 12:36:29
[1577] Sirpi2006-12-04 12:36:29

Ebben a hozzászólásban én némi zavart látok, pl. nem tudom miért nem a p2+p=p egyenletet vizsgáljuk, aminek triviálisan csak a p=0 megoldása (mintha a p\top2+1 rekurzió is belekeveredett volna a dologba).

Viszont azt, hogy a sorozat sosem korlátos, a következőképp is belátható:

Legyen x=p-1/4>0, vagyis az első tag ennyivel van 1/4 felett. Ekkor a második tag eltérése 1/4-től:

p2+p-1/4=(x+1/4)2+(x+1/4)-1/4=x2+3/2.x+1/16>3/2.x

Vagyis a következő tag 1/4-től való eltérése legalább másfélszer akkora lesz, mint az elsőnek, így a sorozat minden p>1/4 esetén exponenciálisan nőni fog.

Előzmény: [1574] epsilon, 2006-12-04 07:17:56
[1576] jenei.attila2006-12-04 11:55:38

Lehet, hogy butaságot kérdezek, de epsilon levezetése szerint p>1/4 esetén a sorozat tényleg monoton növő, és ekkor ha van felső korlátja, akkor konvergens is. Ha pedig konvergens, akkor csak az lehetne a határértéke, amit epsilon megadott. Na de az nem valós, ebből szerintem az következik, hogy nincs határértéke, de akkor nem is korlátos. Mit szóltok hozzá?

Előzmény: [1573] Lóczi Lajos, 2006-12-03 20:49:25
[1575] nadorp2006-12-04 09:36:55

A \frac{1+\sqrt{1-4p}}2 kifejezés p>\frac14 esetén komplex szám, tehát nem lehet felső korlát.

Előzmény: [1574] epsilon, 2006-12-04 07:17:56

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]