Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]    [403]  

Szeretnél hozzászólni? Jelentkezz be.
[1700] magusocska2007-01-08 09:52:47

Teljesen igazad van - elnézést kérek [ vadidegenül szorri :-)) ]

Csak magyarázatképpen említem meg, hogy

- túlságosan hozzá vagyok (gyunk) szokva az intelligens ellenőrzőrendszerekhez (nincs aláhúzás? akkor mehet)

- egy sort írtam le, a többi másoltam, és csak a számokat javítottam át, a toldalékokat nem

- a gyors kommunikációs kényszer (sms, email,chat) miatt egyre kevesebb jelentőséget tulajdonítunk (és sajnos ezek szerint -tok) a helyesírási konvencióknak

- és Proszékyék még nem publikálták a KÖMAL fórumra is alkalmazható ellenőrző rutincsomagjukat :-)

Előzmény: [1699] BohnerGéza, 2007-01-08 09:02:58
[1699] BohnerGéza2007-01-08 09:02:58

Nagyon örvendetes, ha valaki tisztában van idegen szavak jelentésével. ( politikai publicitás, korifeus, kontextus, konvenció )

De jó lett volna az alapvető magyar szabályokat is betartani az előző hozzászólásban! ( Teljes hasonulás. )

kilenccel 9-cel nyolccal 8-cal ...

a legcsúnyább a 2-el, a 2-vel helyett!

Sajnos rengeteg helyen látni rosszul írva ezeket a sajtóban!

Előzmény: [1698] magusocska, 2007-01-08 08:20:32
[1698] magusocska2007-01-08 08:20:32

Érdekes is, matematika is, de kérdés, hogy feladat-e, mindenesetre túl vagyok rajta.

Peano politikai publicitásáról hallottatok-e? (Összerugtam a port a lányom matektanárjával - így derült ki az ellentmondás.)

A természetes számok Peano féle meghatározása tartalmazta a nullát, az én egyetemi jegyzeteimben a természetes számok pozitív egészként szerepeltek, ma ismét az eredeti halmaz a hivatalos. A Lomonoszov korifeusaival lehet kapcsolatban az ügylet...

Tehát a kérdés (feladat): a magyar matematikaoktatásban mely években tanították a természetes számok halmazát az eredeti Peano-axiómától eltérően?

Megjegyzés:

A Wikipédia a következőt írja a "Természetes számok"-nál :

Vigyázat! Tekintve, hogy egyes matematikai tárgyú könyvek a természetes számok közé sorolják a nullát, mások nem, így minden esetben figyelmet kell fordítanunk arra, hogy utánanézzünk, az adott kontextusban a szerzők melyik konvenciót alkalmazzák.

[1697] magusocska2007-01-08 08:03:44

Mellyek az a 9 jegyű számok, amire igazak az alábbiak:

a 9 jegyű szám osztható 9-el,

ha elhagyjuk az utolsó jegyét, akkor az így kapott 8 jegyű szám osztható 8-al,

ha elhagyjuk az utolsó jegyét, akkor az így kapott 7 jegyű szám osztható 7-el,

. . .

ha elhagyjuk az utolsó jegyét, akkor az így kapott 2 jegyű szám osztható 2-el.

Elég könnyű legalább egyet találni (pl. 13694729) a jegyenkénti szabályalkalmazással, de az összes megtalálására a brutal force-n kívül van -e módszer?

[1696] Lóczi Lajos2007-01-07 14:29:20

Köszönöm, ezzel a kiegészítéssel már én is látom minden alesetben, hogy hogy mehet a sorozat -- szép gondolatmenet.

Előzmény: [1695] Sirpi, 2007-01-07 07:11:10
[1695] Sirpi2007-01-07 07:11:10

Igaz, hogy már elhangzott egy sokkal frappánsabb megoldás (grat érte), de azért ha már kérdés, válaszolok:

Mivel |bn/2-bn+1|<\varepsilon minden n>N-re a folytonosság miatt, ezért bn/2-\varepsilon\leqbn+1\leqbn/2+\varepsilon. Vagyis ha bn\geq3\varepsilon, akkor (3/2-1)\varepsilon\leqbn+1, tehát nem válthat előjelet (a bal oldali egyenlőtlenséget felhasználva), másrészt bn+1\leqbn/2+\varepsilon\leqbn/2+bn/3\leqbn, tehát a sorozat monoton is.

Azt hittem, hogy ezek teljesen nyilvánvalónak látszanak az egyenlőtlenségből, azért nem részleteztem a dolgot ennyire.

Ha bn<0, akkor ugyanez elmondható, csak akkor a sorozat alulról, szintén monoton módon megy be a [-3\varepsilon;3\varepsilon] intervallumba.

Előzmény: [1693] Lóczi Lajos, 2007-01-07 02:55:59
[1694] Lóczi Lajos2007-01-07 03:23:19

Köszönöm a megoldásokat, az állítás igazsága viszont azt jelenti, hogy most van egy sokkal kevesebb számolást igénylő megoldásunk az [1681]-es hozzászólás feladatára, az ugyanis alig igényel számolást belátni, hogy

un=2n-4/3+an

alakú, ahol an+2an+1 nullához tart és korlátos, tehát most már valóban tudjuk, hogy maga an is nullához tart, ez pedig elég ahhoz, hogy a -19/12-et kihozzuk.

Előzmény: [1692] nadorp, 2007-01-07 00:32:48
[1693] Lóczi Lajos2007-01-07 02:55:59

Nyilván azzal kell kezdeni a bizonyítást, hogy a b sorozat bemegy a [-3\varepsilon,3\varepsilon] intervallumba.

"Az pedig, hogy valóban be is megy, következik abból, hogy ha nem menne be, akkor végig 3\varepsilon felett maradna, valamint monoton módon csökkenne (ezt is könnyű látni), tehát konvergens lenne, de 2-nál nagyobb értékhez nem tud konvergálni."

De ha nem menne be, miért maradna 3\varepsilon felett? Miért ne ugrálhatna (pozitív és negatív értékekre) és főleg, miért kellene, hogy monoton legyen a b sorozat?

Előzmény: [1688] Sirpi, 2007-01-04 23:47:54
[1692] nadorp2007-01-07 00:32:48

Bocs, elírtam a becslés második tagját, helyesen:

\frac{N}{2^{n-N+1}}K

Előzmény: [1691] nadorp, 2007-01-06 12:56:32
[1691] nadorp2007-01-06 12:56:32

Legyen bn=an+2an+1. Ekkor

a_2=\frac{b_1-a_1}2

a_3=\frac{b_2-a_2}2=\frac{b_2}2-\frac{b_1-a_1}4

a_4=\frac{b_3-a_3}2=\frac{b_3}2-\frac{b_2}4+\frac{b_1-a_1}8

...

a_{n+1}=\frac{b_n-a_n}2=\frac{b_n}2-\frac{b_{n-1}}4+\frac{b_{n-2}}8-...(-1)^n\frac{b_2}{2^{n-1}}+(-1)^{n+1}\frac{b_1-a_1}{2^n}.

Mivel \lim_{n\to\infty}b_n=0, ezért n>N esetén |bn|<\epsilon, azaz

|a_{n+1}|\leq\epsilon\left(\frac12+\frac14+...\frac1{2^{n-N}}\right)+\frac1{2^{n-N+1}}K<\epsilon+\frac1{2^{n-N+1}}K, ahol K a |b1-a1|,|b2|,|b3|... egy közös felső korlátja. ( Ez létezik, mert bn konvergens). Innen már látszik, hogy \lim_{n\to\infty}a_n=0

Előzmény: [1687] Lóczi Lajos, 2007-01-04 22:25:16

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]    [403]