Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]    [403]  

Szeretnél hozzászólni? Jelentkezz be.
[1710] S.Ákos2007-01-09 19:55:01

Itt van egy közelítő megoldás

Előzmény: [348] nadorp, 2004-04-27 15:42:14
[1709] Cckek2007-01-09 18:25:30

Elnézést a közbeszólásért de k értéke kiszámítható r függvényében ugyanis a lelegelendő terület felírható integrálok különbségeként. Nos a számítások bonyolultak én pedig lusta vagyok, de úgy nézem hogy a képletben mindenképpen szerepel az arcsin függvény bizonyos értéke. Talán innen ered a megtszerkeszthetetlenség.

Előzmény: [1707] HoA, 2007-01-09 17:18:16
[1708] psbalint2007-01-09 17:38:50

Igazság szerint én megpróbáltam kifejezni a kötél hosszának értékét r-rel. Ha nem lehet egy zárt formulát adni, akkor viszont örülnék ezen állítás bizonyításának.

[1707] HoA2007-01-09 17:18:16

Nincsenek régi viccek, csak öreg emberek... A feladatot szerintem a Fórumosok ismerik, ami nem baj, mert itt inkább az az érdekes, mit jelent az, hogy "nem boldogulok vele". Nyilván látod, hogy mivel minden kör hasonló egymáshoz, a megoldás k*r, ahol 1 < k < 2 , hiszen az r hosszú kötéllel a terület felénél kevesebb legelhető le, 2r -nyi kötéllel pedig az egész kert. k numerikus értéke fokozatos közelítésekkel (számítógépes programmal, kézi számolással) tetszőleges pontossággal kiszámítható. Könnyen belátható, hogy a legelhető terület k-nak monoton függvénye, így adott k-hoz kiszámítva a legelhető területet, attól függően, hogy az nagyobb vagy kisebb a fél kertnél, k-t csökkenteni vagy növelni kell, míg el nem érjük a kitűzött pontosságot. De ha azt várjuk, hogy k-t valamilyen zárt alakban felírhassuk, például "szerkeszthető" lenne, tehát egész számok, a négy alapművelet és négyzetgyökök használatával felírható, akkor csalódnunk kell. A Fórum olvasói számára talán éppen ez lehet egy jó kis feladat: Bizonyítsuk be, hogy k nem szerkeszthető.

Előzmény: [1706] psbalint, 2007-01-09 15:38:27
[1706] psbalint2007-01-09 15:38:27

Üdvözlök mindenkit! Egy feladatot szeretnék elmondani, remélem még nem volt, ha volt, elnézést. Nagyon egyszerűnek tűnik mégsem boldogulok vele...

Egy kör alakú kert sugara r, a körvonal egy pontjához belülről hozzákötünk egy kecskét egy kötéllel. Milyen hosszú legyen a kötél, hogy a kecske a kör területének felét tudja lelegelni?

[1705] Cckek2007-01-08 23:04:15

Azt csak azért adtam meg hogy minden valós számra a függvény értelmezett legyen. Mert a funkcionálegyenlet 0- ban nem értelmezett. Ilyen függveny az f(x)=x illetve f(x)=1,x\ne0 és f(x)=-1,x\ne0

Előzmény: [1704] Lóczi Lajos, 2007-01-08 22:59:12
[1704] Lóczi Lajos2007-01-08 22:59:12

Vajon hogyan lehet majd használni az f(0)=0 feltételt, ha bármelyik változó helyébe is írunk 0-t, 0-val osztás lép fel?

Előzmény: [1703] Cckek, 2007-01-08 22:22:19
[1703] Cckek2007-01-08 22:22:19

Ugyan már máshol is kitűztem, de nem érkezett megoldás rá, remélem itt együttesen megoldjuk: Oldjuk meg a következő funkcionálegyenletet

f:R\to R, f(xyz)=f\left(\frac{xf(y)}{z}\right)f\left(\frac{yf(z)}{x}\right)f\left(\frac{zf(x)}{y}\right),f(0)=0.

[1702] magusocska2007-01-08 19:33:53

Egy QBASIC program 2.5 mp alatt kihozta, hogy 48 megoldás van.

A progi lényegében kipróbálta az oszhatósági szabályokat a fokozatosan növelt helyiértékszámú számokra.

Más, "elegánsabb" módszer nem lenne?

Előzmény: [1697] magusocska, 2007-01-08 08:03:44
[1701] bgy672007-01-08 17:49:27

A következő problémám lenne, segítsen, aki tud!

12k+4 embert akarok 4-személyes asztalokhoz leültetni (römi-verseny) 4k+1 fordulóban úgy, hogy mindenki mindenkivel pontosan egyszer játsszon.

Egy órát kerestem google-val, de nem találtam táblázatot, csak azt a tételt, hogy ez mindig megoldható.

16 személyre meg is csináltam, egyszerűen mindig a legkisebb lehetséges sorszámú személyt ültettem le sorban és kijött, lehet hogy ez mindig működne, de programozni annyira nem tudok, hogy megcsináljam, kézzel meg hosszú. "Szép" mintát meg nem találtam, amit általánosítani lehetne.

Aki találkozott a problémával (gráfelmélet, véges testek??), és tud sorsolást leglább 28 és 40 főre, pls szóljon.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]    [403]