| [2331] Lbandi | 2007-09-27 08:56:05 |
 Köszönöm a hozzászólást, de attól tartok nem lettem tőle okosabb. Azt eddig is tudtam, hogy egy ilyen egyenletnek vagy nincs megoldása, vagy végtelen sok van. A kérdés az, hogy adott a, b és c paraméterekkel mennyi lehet x és y legnagyobb közös osztója (feltételezve, hogy megoldható persze). Nyilván nem lehet akármi, hiszen legalább a c-t osztania kell a közös osztónak, de ez még nem egy kimerítő megoldás. Bocs, ha nem volt elég tiszta a feladat megfogalmazása, vagy ha valamit félreértettem a hozzászólásodban.
|
| Előzmény: [2330] Hajba Károly, 2007-09-27 01:19:51 |
|
| [2330] Hajba Károly | 2007-09-27 01:19:51 |
 Ha a*x+b*y=c egyenletnek van megoldása, akkor végtelen megoldása van, mivel a*(x-n*b)+b*(y+n*a)=c is igaz. n tetszőleges egész.
S mivel két relatív prím valahányszori összeadásával a két szám szorzatánál nagyobb bármely szám előállítható, így ha a és b relatív prímek c tetszőleges lehet, lesz az egyenletnek megoldása, s végtelen számú.
|
| Előzmény: [2329] Lbandi, 2007-09-26 21:59:47 |
|
| [2329] Lbandi | 2007-09-26 21:59:47 |
 Sziasztok! Már egy pár órája a következő feladattal bajlódok: a*x+b*y=c, lineáris diofantoszi egyenletnek létezik megoldása, azaz lnko(a,b) osztja c-t. Mennyi lehet lnko(x,y)?
Nyilván lnko(x,y) osztja c-t, de azt nem sikerült még bizonyítanom, hogy c minden osztójára létezik x,y úgy hogy lnko(x,y)=c, vagy hogy c-nek csak bizonyos osztóira (például csak c/(lnko(a,b)) osztóinak mindegyikére). Persze az is lehet, hogy nem vettem észre valami triviálisat, mindenesetre előre is köszönök minden hozzászólást :)
|
|
|
| [2327] Gyöngyő | 2007-09-25 12:25:16 |
 Köszike Nadorp!
este én is rájöttem a megoldásra,és ráadásul nem is ezt a feladatot akartam elküldeni,szerintem ennek a feladattípusnak van egy nehezebb változata.Én nem jövök rá sehogysem: 33+43+53=63 és 123+193+533=543 273+463+1973=1983 ra. Az első tagokat sikerült beazonosítanom,de a többivel van a gondom! Előre is köszönöm!
Üdv: Zsolt
|
| Előzmény: [2326] nadorp, 2007-09-25 10:24:20 |
|
|
| [2325] Gyöngyő | 2007-09-24 22:42:32 |
 Sziasztok! Tudnátok segíteni a következő feladatban: Egy összefüggést kell megsejteni: 93+123+153=183 283+533+753=843 653+1273+2483=2603
Köszönettel: Zsolt
|
|
| [2324] rizsesz | 2007-09-21 08:38:13 |
 A jó esetek azt jelentik, hogy az n. húzza ki magát az n. esetben, tehát az első n-1-et kell vizsgálni, akikre igaz, hogy egymás között senki nem húzta ki magát. Ez pedig szerintem tökéletesen reprezentálható an-1-gyel.
|
|
|
| [2322] rizsesz | 2007-09-20 15:39:46 |
 Tökéletes. :) Igazából az volt a feladat, hogy n gyerek karácsonyi ajándék-húzásba kezd, és az első n-1 embernek lehetősége van arra, hogy újra húzzon, ha önmagát húzta. A kérdés annak az volt, hogy mi annak a valószínűsége, hogy az n. ember önmagát húzza. Ezt én úgy definiáltam, hogy a jó esetek száma az, hogy az első n-1 ember nem húzza önmagát, azaz az előző értelmezésekben an-1, míg az összes eset an, így a megoldás ezek hányadosa.
|
| Előzmény: [2321] Lóczi Lajos, 2007-09-20 14:34:13 |
|