Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[2528] Cckek2008-01-04 16:22:44

Itt van Lajos, egy neked való feladat, egy helybéli igen megbecsült matematikus egyik feladatát általánosítgattam. Persze bárki megoldhatja ha van kedve hozzá.

Legyen \alpha,\beta>0,0<\beta-\alpha<1. Számítsuk ki

\left[\frac{(e^\beta+e^\alpha)(\beta-\alpha)}{e^\beta-e^\alpha}\right]

értéket ahol [x]-el az x valós szám egész részét jelöltük.

[2527] Lóczi Lajos2007-12-30 15:44:32

Tovább próbálkozom. Legyenek tehát P és Q az n-dimenziós (komplex) Cn teret önmagukba képező n x n-es hermitikus idempotens mátrixok, melyek rangja azonos.

A rang a képtér dimenziója.

Az operátorokra vonatkozó felbontási tétel alapján tudjuk (felhasználva, hogy most az operátoraink hermitikusak és véges dimenzióban vagyunk), hogy Cn előáll a lineáris operátor képtere és magtere direkt összegeként. (Speciálisan, a képtér és a magtér dimenziójának összege n.)

Ezekből azt kapjuk, hogy P-nek és Q-nak nemcsak a képtere, de a magtere is azonos dimeziós kell legyen.

Korábban láttuk, hogy P=PQ. Ebből az adódik, hogy ha egy x vektor Q magterében van, akkor egyúttal P magterében is benne van: ker(Q)\subset ker (P). De a két magtér, mint altér, azonos dimenziójú, ez csak úgy lehet, ha azonos.

De akkor a felbontási tétel miatt az ortogonális komplementereik, vagyis a képtereik is azonos alterek.

Tudjuk, hogy a projektorok a képtéren identitásként hatnak. (Valóban, ha x pl. P képterében van, akkor alkalmas y\in Cn vektorral x=Py. De az idempotencia miatt ekkor Px=PPy=Py=x.)

Legyen tehát z egy tetszőleges Cn-beli vektor. Ekkor z előáll z0+z1 alakban, ahol z0 P magterébe esik (ami egyúttal Q magtere is), z1 pedig P (avagy Q) képterébe esik. Emiatt

Pz=P(z0+z1)=Pz1=z1=Qz1=Q(z0+z1)=Qz,

tehát P=Q.

Remélem, ezzel a megoldás rendben van :)

Előzmény: [2399] Lóczi Lajos, 2007-10-22 12:32:28
[2526] hobbymatekos2007-12-30 15:38:23

Nem kőtáblába véstem:-) Azért irtam mert érdekel a téma. Semmi egyéb. Az összes tévedésre szükséges rámutatni. Az összeget azért gondolom oda a definicióhoz, mert igazán az az oldala izgat. Mint ahogy mondtad is a mátrix nyoma fontos.(Fizikailag a nyom sűrűséggel kapcsolatos. A sűrűségek pedig additivek? Vagyis egy térbeli pontban egy részecske helyett rögtön egy r szer akkora?. Helycserével? Anélkül?) Diagonálmátrixok összegének nyoma a nyomok összege. r(a+a)=raa, a mátrix elemei, r komplex számok, szintén megoldható, ekkor persze ferdén hermitikus a mátrix, akkor főátlóban tisztán képzetes szám állhat, de ezek minden páros hatványa lehet hermitikus, idempotens. De ezek csak gondolatok. Az eredeti feladattal kapcsolatban csak annyi volt a meglátásom, hogy a mátrix harmadik hatványa van a bizonyitandóban, akkor PP=P ből következik idempotencia miatt PQP=PQ=QP=PP=P. A középső rész kommutativitás. (Kommutativitásra nxn mátrixnál legalább nxn művelet kell eldöntéséhez. És ha n az Avogadro szám?) Egyébként olvasótok vagyok inkább. BUÉK

Előzmény: [2524] Cckek, 2007-12-30 00:31:48
[2525] Lóczi Lajos2007-12-30 14:21:01

(Nem kukacoskodásból kérdeztem rá direktben, csak azért, mert nem értettem, és meg akartam érteni az állítását, ehhez tudnom kellett, a definíciókban "közös nevezőn" vagyunk-e :)

Előzmény: [2524] Cckek, 2007-12-30 00:31:48
[2524] Cckek2007-12-30 00:31:48

Az értelmezéseket valóban kitünően elmondtad, s én hiszek abban hogy ez a forum a matematika és persze a matematikusok feltétlen tiszteletéről szól. Éppen ezért nem árt néha beismerni ha tévedtünk. Ez k...a nehéz de a tisztelet elérése szempontjából feltétlenül szükséges. És nem olyan vészes a tévedés,-a matematikai eredmények tévedések sorozatai, egy tévedés kijavítása oriási eredmény lehet:D- sokkal inkább veszélyes feltétlenül védeni az igazunkat. A magam hibájából tanultam ezt tehát, sértődöttségre semmi ok.

Előzmény: [2523] hobbymatekos, 2007-12-29 02:55:18
[2523] hobbymatekos2007-12-29 02:55:18

Az I idempotens. Elmondtam az általános definiciot. (Annak értelmében nem lenne idempotens) Mátrixokra A=AA=AAA..... Ez a probléma amit kitűzött a kolléga: PQP=PP=P. Az állitása PQP=P alakban volt megadva. Továbbá csak vázoltam mxn mátrixból kiindulva unitér mátrixra mi adódik. Rang változatlan. Te megcsináltad Projektorra. Kellene még egy szokásos (A+A*)/2 és poláris P=QQU felbontásra is.

Előzmény: [2520] Lóczi Lajos, 2007-12-28 21:08:34
[2522] hobbymatekos2007-12-29 02:31:15

2391 ' Transzponált.

Előzmény: [2521] Lóczi Lajos, 2007-12-28 21:18:43
[2521] Lóczi Lajos2007-12-28 21:18:43

Nem értem ezt. Kérlek, mondd ki, mi az állításod és mit bizonyítasz.

"Innen generalizálással adódik az állitás." Ez mit jelent és melyik állítás?

"P=PP=PPP implikálja TQ=TTQ implikáció ugyanaz, mint T=TQT." Ez nem magyar mondat. Kérlek, tisztázd.

Mit jelölsz felső vesszővel?

Stb.

Előzmény: [2519] hobbymatekos, 2007-12-28 00:35:05
[2520] Lóczi Lajos2007-12-28 21:08:34

Akkor tehát egyetértünk, hogy a [2509]-es hozzászólásod téves érvelést tartalmazott?

Előzmény: [2519] hobbymatekos, 2007-12-28 00:35:05
[2519] hobbymatekos2007-12-28 00:35:05

Ez már hermitikus és idempotens is. És pozitiv szemidefinit. Diagonizálható. Egy diagonál mátrix pedig triviálisan hermitikus és idempotens, ha elemei valósak (csak ekkor hermitikus definició szerint). Legyen M mxn mátrix, rangja n. És oszlopai ortonormáltak, P=MM' hermitikus,ha főátlóbeli elemei valósak, továbbá ortonormáltság miatt M'M=I , nxn es identitás. Létezik U unitér mátrix, T=U'PU. Mivel P hermitikus, T is az. PP=P implikálja TT=T, hiszen minden diagonális elem 1 vagy nulla és a rang ugyanannyi marad, azaz T n db 1 est és m-n db nullát tartalmaz főátlójában. Azaz P=UTU'=UTTU=UT'U'UT'U=MM' és M olyan mátrix, hogy n oszlopa U beli. Innen generalizálással adódik az állitás. Q rangja ugyanannyi mint P nek, valamint hermitikus idempotens.

P=PP=PPP implikálja TQ=TTQ implikáció ugyanaz, mint T=TQT.

Előzmény: [2518] Cckek, 2007-12-26 14:17:40

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]